|
全身免疫炎症指数对冠心病发生发展的预测价值
|
Abstract:
冠心病(Coronary Artery Disease, CAD)是全世界范围内发病率和死亡率均居首位的心血管疾病。近年来,冠心病的疾病负担在全球范围内显著上升,严重影响着人类的健康。冠心病其本质是一种炎症性疾病,许多炎症标志物被报道与冠心病有关。据国内外相关研究,免疫反应在冠心病的发生发展过程中也发挥着必不可少的作用。全身免疫炎症指数(Systemic Immune Inflammation Index, SII)能反映机体炎症及免疫状态的一个新型炎症指标,多项研究表明其可能与冠心病的发生、发展及预后密切相关。本文旨在从SII在预测冠心病发生发展中的价值,以及其在引发冠心病中的作用机制着手,为SII在未来冠心病的预防和治疗中提供理论支持。
Coronary Artery Disease (CAD) is the cardiovascular disease with the highest incidence rate and mortality in the world. In recent years, the disease burden of coronary heart disease has significantly increased globally, seriously affecting human health. Coronary heart disease is essentially an inflammatory disease, and many inflammatory markers have been reported to be associated with coronary heart disease. According to relevant research at home and abroad, immune response also plays an essential role in the occurrence and development of coronary heart disease. The Systemic Immune Inflammation Index (SII) is a novel inflammatory indicator that reflects the inflammatory and immune status of the body. Multiple studies have shown that it may be closely related to the occurrence, development, and prognosis of coronary heart disease. This article aims to provide theoretical support for the future prevention and treatment of coronary heart disease by starting from the value of SII in predicting the occurrence and development of coronary heart disease, as well as its mechanism of action in triggering coronary heart disease.
[1] | GBD 2017 Causes of Death Collaborators (2018) Global, Regional, and National Age-Sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet, 392, 1736-1788. |
[2] | Hu, B., Yang, X., Xu, Y., Sun, Y., Sun, C., Guo, W., et al. (2014) Systemic Immune-Inflammation Index Predicts Prognosis of Patients after Curative Resection for Hepatocellular Carcinoma. Clinical Cancer Research, 20, 6212-6222. https://doi.org/10.1158/1078-0432.ccr-14-0442 |
[3] | Tardif, J., Kouz, S., Waters, D.D., Bertrand, O.F., Diaz, R., Maggioni, A.P., et al. (2019) Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. New England Journal of Medicine, 381, 2497-2505. https://doi.org/10.1056/nejmoa1912388 |
[4] | Montecucco, F., Liberale, L., Bonaventura, A., Vecchiè, A., Dallegri, F. and Carbone, F. (2017) The Role of Inflammation in Cardiovascular Outcome. Current Atherosclerosis Reports, 19, Article No. 11. https://doi.org/10.1007/s11883-017-0646-1 |
[5] | Libby, P., Ridker, P.M. and Hansson, G.K. (2009) Inflammation in Atherosclerosis. Journal of the American College of Cardiology, 54, 2129-2138. https://doi.org/10.1016/j.jacc.2009.09.009 |
[6] | Li, Q., Ma, X., Shao, Q., Yang, Z., Wang, Y., Gao, F., et al. (2022) Prognostic Impact of Multiple Lymphocyte-Based Inflammatory Indices in Acute Coronary Syndrome Patients. Frontiers in Cardiovascular Medicine, 9, Article 811790. https://doi.org/10.3389/fcvm.2022.811790 |
[7] | Goodman, S.G., Huang, W., Yan, A.T., Budaj, A., Kennelly, B.M., Gore, J.M., et al. (2009) The Expanded Global Registry of Acute Coronary Events: Baseline Characteristics, Management Practices, and Hospital Outcomes of Patients with Acute Coronary Syndromes. American Heart Journal, 158, 193-201.e5. https://doi.org/10.1016/j.ahj.2009.06.003 |
[8] | 闵轩, 王凯阳, 宁怡, 等. 系统免疫炎症指数与冠心病患者冠状动脉病变程度的相关性研究[J]. 中国心血管杂志. 2023, 28(3): 228-233. |
[9] | Liu, Y., Ye, T., Chen, L., Jin, T., Sheng, Y., Wu, G., et al. (2021) Systemic Immune-Inflammation Index Predicts the Severity of Coronary Stenosis in Patients with Coronary Heart Disease. Coronary Artery Disease, 32, 715-720. https://doi.org/10.1097/mca.0000000000001037 |
[10] | Candemir, M., Kiziltunç, E., Nurkoç, S. and Şahinarslan, A. (2021) Relationship between Systemic Immune-Inflammation Index (SII) and the Severity of Stable Coronary Artery Disease. Angiology, 72, 575-581. https://doi.org/10.1177/0003319720987743 |
[11] | Erdoğan, M., Erdöl, M.A., Öztürk, S. and Durmaz, T. (2020) Systemic Immune-Inflammation Index Is a Novel Marker to Predict Functionally Significant Coronary Artery Stenosis. Biomarkers in Medicine, 14, 1553-1561. https://doi.org/10.2217/bmm-2020-0274 |
[12] | Dziedzic, E.A., Gąsior, J.S., Tuzimek, A., Paleczny, J., Junka, A., Dąbrowski, M., et al. (2022) Investigation of the Associations of Novel Inflammatory Biomarkers—Systemic Inflammatory Index (SII) and Systemic Inflammatory Response Index (SIRI)—With the Severity of Coronary Artery Disease and Acute Coronary Syndrome Occurrence. International Journal of Molecular Sciences, 23, Article 9553. https://doi.org/10.3390/ijms23179553 |
[13] | Yang, Y., Wu, C., Hsu, P., Chen, S., Huang, S., Chan, W.L., et al. (2020) Systemic Immune‐inflammation Index (SII) Predicted Clinical Outcome in Patients with Coronary Artery Disease. European Journal of Clinical Investigation, 50, e13230. https://doi.org/10.1111/eci.13230 |
[14] | Huang, J., Zhang, Q., Wang, R., Ji, H., Chen, Y., Quan, X., et al. (2019) Systemic Immune-Inflammatory Index Predicts Clinical Outcomes for Elderly Patients with Acute Myocardial Infarction Receiving Percutaneous Coronary Intervention. Medical Science Monitor, 25, 9690-9701. https://doi.org/10.12659/msm.919802 |
[15] | Hansson, G.K. (2005) Inflammation, Atherosclerosis, and Coronary Artery Disease. New England Journal of Medicine, 352, 1685-1695. https://doi.org/10.1056/nejmra043430 |
[16] | Tsiantoulas, D., Diehl, C.J., Witztum, J.L. and Binder, C.J. (2014) B Cells and Humoral Immunity in Atherosclerosis. Circulation Research, 114, 1743-1756. https://doi.org/10.1161/circresaha.113.301145 |
[17] | 李丹丹, 梅俊, 周庆兵, 等. 固有免疫介导的炎症反应在动脉粥样硬化发病机制中的研究进展[J]. 中国动脉硬化杂志, 2022, 30(1): 71-76. |
[18] | Xiao, Y., Cheng, Y., Liu, W., Liu, K., Wang, Y., Xu, F., et al. (2023) Effects of Neutrophil Fate on Inflammation. Inflammation Research, 72, 2237-2248. https://doi.org/10.1007/s00011-023-01811-2 |
[19] | Chistiakov, D.A., Bobryshev, Y.V. and Orekhov, A.N. (2015) Neutrophil’s Weapons in Atherosclerosis. Experimental and Molecular Pathology, 99, 663-671. https://doi.org/10.1016/j.yexmp.2015.11.011 |
[20] | Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., et al. (2004) Neutrophil Extracellular Traps Kill Bacteria. Science, 303, 1532-1535. https://doi.org/10.1126/science.1092385 |
[21] | Edfeldt, K., Agerberth, B., Rottenberg, M.E., Gudmundsson, G.H., Wang, X., Mandal, K., et al. (2006) Involvement of the Antimicrobial Peptide LL-37 in Human Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1551-1557. https://doi.org/10.1161/01.atv.0000223901.08459.57 |
[22] | Döring, Y., Drechsler, M., Wantha, S., Kemmerich, K., Lievens, D., Vijayan, S., et al. (2012) Lack of Neutrophil-Derived CRAMP Reduces Atherosclerosis in Mice. Circulation Research, 110, 1052-1056. https://doi.org/10.1161/circresaha.112.265868 |
[23] | Niessner, A., Sato, K., Chaikof, E.L., Colmegna, I., Goronzy, J.J. and Weyand, C.M. (2006) Pathogen-Sensing Plasmacytoid Dendritic Cells Stimulate Cytotoxic T-Cell Function in the Atherosclerotic Plaque through Interferon-α. Circulation, 114, 2482-2489. https://doi.org/10.1161/circulationaha.106.642801 |
[24] | Goossens, P., Gijbels, M.J.J., Zernecke, A., Eijgelaar, W., Vergouwe, M.N., van der Made, I., et al. (2010) Myeloid Type I Interferon Signaling Promotes Atherosclerosis by Stimulating Macrophage Recruitment to Lesions. Cell Metabolism, 12, 142-153. https://doi.org/10.1016/j.cmet.2010.06.008 |
[25] | Döring, Y., Manthey, H.D., Drechsler, M., Lievens, D., Megens, R.T.A., Soehnlein, O., et al. (2012) Auto-Antigenic Protein-DNA Complexes Stimulate Plasmacytoid Dendritic Cells to Promote Atherosclerosis. Circulation, 125, 1673-1683. https://doi.org/10.1161/circulationaha.111.046755 |
[26] | Sørensen, O.E. and Borregaard, N. (2016) Neutrophil Extracellular Traps—The Dark Side of Neutrophils. Journal of Clinical Investigation, 126, 1612-1620. https://doi.org/10.1172/jci84538 |
[27] | 范骎, 陶蓉, 张瑞岩, 等. 炎症反应在易损斑块中的作用及其机制研究进展[J]. 中国动脉硬化杂志, 2019, 27(4): 301-306. |
[28] | Dworacka, M., Winiarska, H., Borowska, M., Abramczyk, M., Bobkiewicz-Kozlowska, T. and Dworacki, G. (2007) Pro-atherogenic Alterations in T-Lymphocyte Subpopulations Related to Acute Hyperglycaemia in Type 2 Diabetic Patients. Circulation Journal, 71, 962-967. https://doi.org/10.1253/circj.71.962 |
[29] | Tyrrell, D.J. and Goldstein, D.R. (2020) Ageing and Atherosclerosis: Vascular Intrinsic and Extrinsic Factors and Potential Role of Il-6. Nature Reviews Cardiology, 18, 58-68. https://doi.org/10.1038/s41569-020-0431-7 |
[30] | Fang, P., Li, X., Dai, J., Cole, L., Camacho, J.A., Zhang, Y., et al. (2018) Immune Cell Subset Differentiation and Tissue Inflammation. Journal of Hematology & Oncology, 11, Article No. 97. https://doi.org/10.1186/s13045-018-0637-x |
[31] | Kobiyama, K., Saigusa, R. and Ley, K. (2019) Vaccination against Atherosclerosis. Current Opinion in Immunology, 59, 15-24. https://doi.org/10.1016/j.coi.2019.02.008 |
[32] | 许薇, 王亮, 莫安薇, 等. 肿瘤浸润性自然杀伤细胞在免疫治疗中的研究进展[J]. 中国临床新医学, 2024, 17(3): 344-347. |
[33] | Chen, J., Xiang, X., Nie, L., Guo, X., Zhang, F., Wen, C., et al. (2023) The Emerging Role of Th1 Cells in Atherosclerosis and Its Implications for Therapy. Frontiers in Immunology, 13, Article 1079668. https://doi.org/10.3389/fimmu.2022.1079668 |
[34] | Moss, J.W. (2015) Interferon-γ: Promising Therapeutic Target in Atherosclerosis. World Journal of Experimental Medicine, 5, 154-159. https://doi.org/10.5493/wjem.v5.i3.154 |
[35] | Dimitroglou, Y., Aggeli, C., Theofilis, P., Tsioufis, P., Oikonomou, E., Chasikidis, C., et al. (2023) Novel Anti-Inflammatory Therapies in Coronary Artery Disease and Acute Coronary Syndromes. Life, 13, Article 1669. https://doi.org/10.3390/life13081669 |
[36] | Leistner, D.M., Kränkel, N., Meteva, D., Abdelwahed, Y.S., Seppelt, C., Stähli, B.E., et al. (2020) Differential Immunological Signature at the Culprit Site Distinguishes Acute Coronary Syndrome with Intact from Acute Coronary Syndrome with Ruptured Fibrous Cap: Results from the Prospective Translational OPTICO-ACS Study. European Heart Journal, 41, 3549-3560. https://doi.org/10.1093/eurheartj/ehaa703 |
[37] | Chowdhury, R.R., D’Addabbo, J., Huang, X., Veizades, S., Sasagawa, K., Louis, D.M., et al. (2022) Human Coronary Plaque T Cells Are Clonal and Cross-React to Virus and Self. Circulation Research, 130, 1510-1530. https://doi.org/10.1161/circresaha.121.320090 |
[38] | Saigusa, R., Winkels, H. and Ley, K. (2020) T Cell Subsets and Functions in Atherosclerosis. Nature Reviews Cardiology, 17, 387-401. https://doi.org/10.1038/s41569-020-0352-5 |
[39] | Ma, S.D., Mussbacher, M. and Galkina, E.V. (2021) Functional Role of B Cells in Atherosclerosis. Cells, 10, Article 270. https://doi.org/10.3390/cells10020270 |
[40] | Libby, P. (2012) Inflammation in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 2045-2051. https://doi.org/10.1161/atvbaha.108.179705 |
[41] | Morrell, C.N., Pariser, D.N., Hilt, Z.T. and Vega Ocasio, D. (2019) The Platelet Napoleon Complex—Small Cells, but Big Immune Regulatory Functions. Annual Review of Immunology, 37, 125-144. https://doi.org/10.1146/annurev-immunol-042718-041607 |
[42] | Hundelshausen, P.v. and Lievens, D. (2011) Platelets in Atherosclerosis. Thrombosis and Haemostasis, 106, 827-838. https://doi.org/10.1160/th11-08-0592 |
[43] | Gawaz, M. (2005) Platelets in Inflammation and Atherogenesis. Journal of Clinical Investigation, 115, 3378-3384. https://doi.org/10.1172/jci27196 |
[44] | Linden, M.D. and Jackson, D.E. (2010) Platelets: Pleiotropic Roles in Atherogenesis and Atherothrombosis. The International Journal of Biochemistry & Cell Biology, 42, 1762-1766. https://doi.org/10.1016/j.biocel.2010.07.012 |
[45] | Lievens, D., Zernecke, A., Seijkens, T., Soehnlein, O., Beckers, L., Munnix, I.C.A., et al. (2010) Platelet CD40L Mediates Thrombotic and Inflammatory Processes in Atherosclerosis. Blood, 116, 4317-4327. https://doi.org/10.1182/blood-2010-01-261206 |