全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于机器学习与传感器数据的机器故障预测研究
Research on Machine Fault Prediction Based on Machine Learning and Sensor Data

DOI: 10.12677/csa.2025.155148, PP. 760-765

Keywords: 机器学习,传感器,XGBoost
Machine Learning
, Sensor, XGBoost

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了利用机器学习算法预测机器故障。作者使用了和鲸社区的传感器数据,包含footfall,tempMode,AQ,USS,CS,VOC,RP,IP,Temperature和fail等特征。利用这些数据,分别构建了XGBoost、随机森林和KNN三种机器学习模型进行故障预测,并比较了它们的性能。实验结果表明,XGBoost模型在AUC和准确率等指标上表现最佳,AUC值为0.9721,准确率为0.9120。机器故障预测在工业生产中具有重要意义,可以减少设备停机时间,提高生产效率。本文的研究成果可以为企业提供有效的机器故障预测方法,具有一定的实际应用价值。
This paper studies the prediction of machine failures using machine learning algorithms. The author utilized sensor data from the whale community, including features such as footfall, tempMode, AQ, USS, CS, VOC, RP, IP, Temperature, and fail. Using these data, three machine learning models, namely XGBoost, Random Forest and KNN, were respectively constructed for fault prediction, and their performances were compared. The experimental resultss show that the XGBoost model performs best in terms of indicators such as AUC and accuracy rate. The AUC value is 0.9721 and the accuracy rate is 0.9120. Machine failure prediction is of great significance in industrial production, which can reduce equipment downtime and improve production efficiency. The research results of this paper can provide enterprises with effective machine fault prediction methods and have certain practical application value.

References

[1]  安会勇, 孔庆绿, 刘硕. 基于机器学习算法的架空输电线路故障定位系统设计与实现[J]. 电气技术与经济, 2025(3): 1-3.
[2]  赵海宝. 基于机器学习的光伏发电系统故障诊断系统研究[J]. 自动化应用, 2025, 66(4): 27-29.
[3]  郭广辉. 基于机器学习的智能变电站运行状态监测与故障诊断方法研究[J]. 电力设备管理, 2025(2): 216-218.
[4]  傅闽豪. 基于机器学习的变压器故障诊断及预警研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2024.
[5]  左娟娟, 朱红杰, 杨继党, 等. 基于半监督机器学习的复杂电网连锁故障诊断方法[J]. 自动化技术与应用, 2024, 43(12): 47-50+92.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133