|
基于Chebyshev点的B样条配置法在奇异摄动两点边值问题中的应用研究
|
Abstract:
在求解奇异摄动两点边值问题时,本文构造了基于Chebyshev点的B样条配置法。该方法采用三次B样条函数作为基函数,利用Chebyshev点作为配置点直接对方程进行求解。文中探讨了该方法在实施时的具体步骤及需要注意的若干细节。通过奇异摄动扩散反应问题、奇异摄动对流扩散反应问题这两个算例的研究,表明基于Chebyshev点的B样条配置法与等距节点下的B样条配置法相比,前者具有高精度和高效率的优势。
In solving the singular perturbation two-point boundary value problems, this paper constructs a Chebyshev B-spline collocation method. This method uses cubic B-spline functions as basis functions and utilizes the Chebyshev point as the configuration point to solve the equation directly. The specific steps in the implementation of the method and several details that need to be noted are discussed in the paper. Through the study of two arithmetic cases, namely, the singular regent diffusion response problem and the singular regent convection diffusion response problem, it is shown that the Chebyshev B-spline collocation method has the advantages of high accuracy and high efficiency as compared with the B-spline configuration method under equidistant nodes.
[1] | 李荣华, 刘播. 微分方程数值解法[M]. 第4版. 北京: 高等教育出版社, 2008. |
[2] | Holmes, M.H. (2013) Introduction to Perturbation Methods. Springer. |
[3] | Shishkin, G.I. (1988) A Difference Scheme for a Singularly Perturbed Equation of Parabolic Type with a Discontinuous Boundary Condition. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 28, 1649-1662. |
[4] | Kumar, V. and Srinivasan, B. (2015) An Adaptive Mesh Strategy for Singularly Perturbed Convection Diffusion Problems. Applied Mathematical Modelling, 39, 2081-2091. https://doi.org/10.1016/j.apm.2014.10.019 |
[5] | Doolan, E.P., Miller, J.J.H. and Schilders, W.H.A. (1980) Uniform Numerical Methods for Problems with Initial and Boundary Layers. Boole Press. |
[6] | Marusic, M. (2014) On ε-Uniform Convergence of Exponentially Fitted Methods. Mathematical Communications, 19, 545-559. |
[7] | Schatz, A.H. and Wahlbin, L.B. (1983) On the Finite Element Method for Singularly Perturbed Reaction-Diffusion Problems in Two and One Dimensions. Mathematics of Computation, 40, 47-89. https://doi.org/10.1090/s0025-5718-1983-0679434-4 |
[8] | 赵辰辉, 王玉兰. 一类奇异摄动抛物型反应扩散问题的数值解[J]. 应用数学进展, 2019, 8(6): 1181-1191. |
[9] | Khuri, S.A. and Sayfy, A.M. (2015) Numerical Solution of a Class of Nonlinear System of Second-Order Boundary-Value Problems: A Fourth-Order Cubic Spline Approach. Mathematical Modelling and Analysis, 20, 681-700. https://doi.org/10.3846/13926292.2015.1091793 |
[10] | 胡志涛, 全赛君, 岳宏杰, 韩丹夫. 解BBMB方程的改进三次B样条配置法[J]. 数学, 2023, 45(5): 50-60. |
[11] | 王仕良. 解Burgers-BBM方程的三次B样条配置法[J]. 安庆师范学院学报(自然科学版), 2010, 16(2): 27-30. |
[12] | 刘兴霞, 孙建安, 张利军. 五次B样条配置法求解广义KdV方程[J]. 天水师范学院学报, 2010, 30(2): 23-26. |
[13] | Trefethen, L.N. (2013) Approximation Theory and Approximation Practice. SIAM. |
[14] | De Boor, C. (1978) A Practical Guide to Splines (Revised Edition). Springer-Verlag, Chapter IX, Section 4. |
[15] | Holmes, M.H. (2007) Introduction to Numerical Methods in Differential Equations. Springer. |