全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Simulink的邮轮变风量空调系统仿真研究与实验验证
Simulation Research and Experimental Verification of Cruise Ship Variable Air Volume Air Conditioning System Based on Simulink

DOI: 10.12677/mos.2025.145391, PP. 259-271

Keywords: 变风量空调系统,实验验证,风量分配,Simulink仿真模型
Variable Air Volume Air Conditioning System
, Experimental Verification, Air Volume Distribution, Simulink Simulation Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

文章验证了在特定环境下变风量空调系统(VAV)仿真模型在风管特性研究中的准确性与可靠性。以邮轮住舱区空调系统为研究对象,构建Simulink仿真模型,将实验测量数据与仿真结果对比进行系统验证,重点分析不同风机频率下的风量分配与风管阻力特性。结果表明:风管阻力对风量分配具有显著影响,通过调节风阀开度,可确保风量分配合理,且末端装置风量随频率增加而提升。仿真数据与实测数据的误差控制在±10%以内,表明Simulink仿真模型能够较准确地反映VAV系统的风量分配与阻力特性,验证了其在相关研究中的适用性。该仿真模型可为邮轮空调系统的设计和优化提供理论依据。
This paper verifies the accuracy and reliability of the variable air volume (VAV) air conditioning system simulation model in the study of duct characteristics under specific environments. This study takes the air conditioning system of the cruise cabin area as the research object, constructs a Simulink simulation model, compares the experimental measurement data with the simulation results for system verification, and focuses on analyzing the air volume distribution and duct resistance characteristics under different fan frequencies. The results show that the duct resistance has a significant effect on the air volume distribution. By adjusting the air valve opening, the air volume distribution can be ensured to be reasonable, and the air volume of the terminal device increases with the increase of frequency. The error between the simulation data and the measured data is controlled within ±10%, indicating that the Simulink simulation model can accurately reflect the air volume distribution and resistance characteristics of the VAV system, verifying its applicability in related research. This simulation model can provide a theoretical basis for the design and optimization of cruise air conditioning systems.

References

[1]  李徐嘉, 高峰. 某型船用变风量空调系统风量控制方法研究[J]. 广东造船, 2021, 40(4): 45-48.
[2]  陈文华, 黄伟稀, 何涛, 等. 船用变风量空调系统解耦技术研究[J]. 舰船科学技术, 2024, 46(2): 42-48.
[3]  Zhang, Y., Yan, T., Xu, X., Gao, J. and Huang, G. (2023) Room Temperature and Humidity Decoupling Control of Common Variable Air Volume Air-Conditioning System Based on Bilinear Characteristics. Energy and Built Environment, 4, 354-367.
https://doi.org/10.1016/j.enbenv.2022.02.005
[4]  陈向阳. 变风量空调系统的风量平衡调试[J]. 暖通空调, 2024, 54(4): 22-28.
[5]  Kang, S., Kim, H. and Cho, Y. (2014) A Study on the Control Method of Single Duct VAV Terminal Unit through the Determination of Proper Minimum Air Flow. Energy and Buildings, 69, 464-472.
https://doi.org/10.1016/j.enbuild.2013.11.005
[6]  Pang, X., Piette, M.A. and Zhou, N. (2017) Characterizing Variations in Variable Air Volume System Controls. Energy and Buildings, 135, 166-175.
https://doi.org/10.1016/j.enbuild.2016.11.031
[7]  孟庆龙, 王文强, 葛俊伶. 变风量空调系统控制策略仿真与实验研究[J]. 建筑科学, 2020, 36(2): 44-50+78.
[8]  李闻龙. 总风量法与定静压法结合的风量控制方法在变风量空调系统中的应用[J]. 暖通空调, 2023, 53(S1): 78-81.
[9]  李徐嘉, 高峰. 某型船用变风量空调系统风量控制方法研究[J]. 广东造船, 2021, 40(4): 45-48.
[10]  李闻龙. 总风量法与定静压法结合的风量控制方法在变风量空调系统中的应用[J]. 暖通空调, 2023, 53(S1): 78-81.
[11]  陈炯德, 王子轩, 姚晔, 等. 变风量空调系统用非线性模型预测控制方法研究[J]. 制冷学报, 2019, 40(6): 62-69.
[12]  杜晗. 变风量空调系统的优化控制及节能研究[J]. 智能建筑, 2015(9): 51-56.
[13]  莫修栋, 侯红磊, 周颖, 等. 变风量空调系统在地铁设备管理用房的应用研究[J]. 暖通空调, 2021, 51(S1): 389-392.
[14]  王汉青, 主编. 通风工程[M]. 第2版. 北京: 机械工业出版社, 2018.
[15]  王乃义, 主编. 船舶空调原理与设备[M]. 哈尔滨: 哈尔滨工程大学出版社, 2001.
[16]  Douglas, J.F., Gasiorek, J. and Swaffield, J.A. (1986) Fluid Mechanics. Longman Scientific & Technical.
[17]  姜辉. 变风量系统自适应静压变频控制及仿真研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2016.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133