全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ZNF433在癌症中的功能与机制:从转录调控到临床应用
The Function and Mechanism of ZNF433 in Cancer: From Transcriptional Regulation to Clinical Applications

DOI: 10.12677/jcpm.2025.42303, PP. 1303-1312

Keywords: ZNF433,KRAB-ZFPs,透明细胞肾细胞癌,前列腺癌
ZNF433
, KRAB-ZFPs, Clear Cell Renal Cell Carcinoma, Prostate Cancer

Full-Text   Cite this paper   Add to My Lib

Abstract:

克鲁佩尔相关盒锌指蛋白(KRAB-ZFPs, Krüppel-Associated Box Zinc Finger Proteins)是人类基因组中数量最多的转录因子家族,广泛参与基因表达调控、生长发育及细胞信号通路的调节。锌指蛋白433 (ZNF433, Zinc Finger Protein 433)基因是KRAB-ZFPs家族的成员,其分子功能和在癌症中的作用尚未被充分研究。在前列腺癌中,ZNF433高表达可促进β-catenin/TCF复合物的形成,激活Wnt/β-catenin信号通路,进而促进癌细胞增殖和迁移,表现为促癌因子。而在肾透明细胞癌中,ZNF433表达下调,其低表达与更高级别的肿瘤分期及较差预后相关,可能与启动子区域的高甲基化导致的转录沉默有关,从而影响肿瘤的发生与进展,表现为抑癌因子。此外,ZNF433的异常表达与癌症患者的临床预后密切相关,提示其在癌症诊断和治疗中的潜在应用价值。本文综述了ZNF433的分子结构、生物学功能及其在前列腺癌和肾透明细胞癌中的作用机制,并探讨了其作为癌症生物标志物和治疗靶点的潜力。未来,进一步解析ZNF433的直接靶基因、上游调控机制及其与肿瘤微环境的相互作用,将有助于深入理解其在癌症中的功能,并为精准治疗提供新的策略。
Krüppel-Associated Box Zinc Finger Proteins (KRAB-ZFPs) are the largest family of transcription factors in the human genome, extensively involved in gene expression regulation, development, and modulation of cellular signaling pathways. Zinc Finger Protein 433 (ZNF433) is a member of the KRAB-ZFPs family, but its molecular function and role in cancer have not been fully elucidated. In prostate cancer, ZNF433 overexpression promotes the formation of the β-catenin/TCF complex, activating the Wnt/β-catenin signaling pathway, which subsequently enhances cancer cell proliferation and migration, functioning as an oncogene. In contrast, in clear cell renal cell carcinoma, ZNF433 expression is downregulated, and its low expression is associated with higher tumor grade, advanced stage, and poorer prognosis. This downregulation may be linked to promoter hypermethylation, leading to transcriptional silencing, thereby influencing tumorigenesis and progression, functioning as a tumor suppressor. Moreover, abnormal expression of ZNF433 is closely correlated with clinical prognosis in cancer patients, suggesting its potential application in cancer diagnosis and therapy. This review summarizes the molecular structure, biological functions, and roles of ZNF433 in prostate cancer and ccRCC, while also exploring its potential as a biomarker and therapeutic target for cancer. In the future, further elucidation of ZNF433’s direct target genes, upstream regulatory mechanisms, and interactions with the tumor microenvironment will help deepen our understanding of its role in cancer and provide new strategies for precision therapy.

References

[1]  Sun, M., Ju, J., Ding, Y., Zhao, C. and Tian, C. (2022) The Signaling Pathways Regulated by KRAB Zinc-Finger Proteins in Cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1877, Article 188731.
https://doi.org/10.1016/j.bbcan.2022.188731
[2]  Wolf, G., Greenberg, D. and Macfarlan, T.S. (2015) Spotting the Enemy Within: Targeted Silencing of Foreign DNA in Mammalian Genomes by the Krüppel-Associated Box Zinc Finger Protein Family. Mobile DNA, 6, Article No. 17.
https://doi.org/10.1186/s13100-015-0050-8
[3]  Schultz, D.C., Ayyanathan, K., Negorev, D., Maul, G.G. and Rauscher, F.J. (2002) SETDB1: A Novel KAP-1-Associated Histone H3, Lysine 9-Specific Methyltransferase That Contributes to Hp1-Mediated Silencing of Euchromatic Genes by KRAB Zinc-Finger Proteins. Genes & Development, 16, 919-932.
https://doi.org/10.1101/gad.973302
[4]  Sripathy, S.P., Stevens, J. and Schultz, D.C. (2006) The KAP1 Corepressor Functions to Coordinate the Assembly of De Novo HP1-Demarcated Microenvironments of Heterochromatin Required for KRAB Zinc Finger Protein-Mediated Transcriptional Repression. Molecular and Cellular Biology, 26, 8623-8638.
https://doi.org/10.1128/mcb.00487-06
[5]  Sun, Y., Keown, J.R., Black, M.M., Raclot, C., Demarais, N., Trono, D., et al. (2019) A Dissection of Oligomerization by the TRIM28 Tripartite Motif and the Interaction with Members of the KRAB-ZFP Family. Journal of Molecular Biology, 431, 2511-2527.
https://doi.org/10.1016/j.jmb.2019.05.002
[6]  Bai, W., Ye, X., Zhang, M., Zhu, H., Xi, W., Huang, X., et al. (2014) MiR‐200c Suppresses TGF‐β Signaling and Counteracts Trastuzumab Resistance and Metastasis by Targeting ZNF217 and ZEB1 in Breast Cancer. International Journal of Cancer, 135, 1356-1368.
https://doi.org/10.1002/ijc.28782
[7]  Vendrell, J.A., Thollet, A., Nguyen, N.T., Ghayad, S.E., Vinot, S., Bièche, I., et al. (2012) ZNF217 Is a Marker of Poor Prognosis in Breast Cancer That Drives Epithelial-Mesenchymal Transition and Invasion. Cancer Research, 72, 3593-3606.
https://doi.org/10.1158/0008-5472.can-11-3095
[8]  Xu, L., Zhang, J., Ma, Y., Yuan, Y., Yu, H., Wang, J., et al. (2022) Microrna-135 Inhibits Initiation of Epithelial-Mesenchymal Transition in Breast Cancer by Targeting ZNF217 and Promoting M6a Modification of Nanog. Oncogene, 41, 1742-1751.
https://doi.org/10.1038/s41388-022-02211-2
[9]  Wang, H., Xu, H., Ma, F., Zhan, M., Yang, X., Hua, S., et al. (2020) Zinc Finger Protein 703 Induces EMT and Sorafenib Resistance in Hepatocellular Carcinoma by Transactivating CLDN4 Expression. Cell Death & Disease, 11, Article No. 225.
https://doi.org/10.1038/s41419-020-2422-3
[10]  Pei, L., He, X., Li, S., Sun, R., Xiang, Q., Ren, G., et al. (2018) KRAB Zinc-Finger Protein 382 Regulates Epithelial-Mesenchymal Transition and Functions as a Tumor Suppressor, but Is Silenced by CpG Methylation in Gastric Cancer. International Journal of Oncology, 53, 961-972.
https://doi.org/10.3892/ijo.2018.4446
[11]  Wang, S., Cheng, Y., Du, W., Lu, L., Zhou, L., Wang, H., et al. (2012) Zinc-Finger Protein 545 Is a Novel Tumour Suppressor That Acts by Inhibiting Ribosomal RNA Transcription in Gastric Cancer. Gut, 62, 833-841.
https://doi.org/10.1136/gutjnl-2011-301776
[12]  Ecco, G., Imbeault, M. and Trono, D. (2017) KRAB Zinc Finger Proteins. Development, 144, 2719-2729.
https://doi.org/10.1242/dev.132605
[13]  Olechnowicz, A., Oleksiewicz, U. and Machnik, M. (2023) KRAB-ZFPs and Cancer Stem Cells Identity. Genes & Diseases, 10, 1820-1832.
https://doi.org/10.1016/j.gendis.2022.03.013
[14]  Sobocińska, J., Molenda, S., Machnik, M. and Oleksiewicz, U. (2021) KRAB-ZFP Transcriptional Regulators Acting as Oncogenes and Tumor Suppressors: An Overview. International Journal of Molecular Sciences, 22, 2212.
https://doi.org/10.3390/ijms22042212
[15]  Nischwitz, S., Cepok, S., Kroner, A., Wolf, C., Knop, M., Müller-Sarnowski, F., et al. (2010) Evidence for VAV2 and ZNF433 as Susceptibility Genes for Multiple Sclerosis. Journal of Neuroimmunology, 227, 162-166.
https://doi.org/10.1016/j.jneuroim.2010.06.003
[16]  Gu, S., Hou, P., Liu, K., Niu, X., Wei, B., Mao, F., et al. (2019) ZNF433 Positively Regulates the Beta-Catenin/TCF Pathway in Prostate Cancer and Enhances the Tumorigenicity of Cancer Cells. OncoTargets and Therapy, 12, 1031-1039.
https://doi.org/10.2147/ott.s178150
[17]  Heyliger, S.O., Soliman, K.F.A., Saulsbury, M.D. and Reams, R.R. (2021) The Identification of Zinc-Finger Protein 433 as a Possible Prognostic Biomarker for Clear-Cell Renal Cell Carcinoma. Biomolecules, 11, Article 1193.
https://doi.org/10.3390/biom11081193
[18]  Schultz, D.C., Friedman, J.R. and Rauscher, F.J. (2001) Targeting Histone Deacetylase Complexes via KRAB-Zinc Finger Proteins: The PHD and Bromodomains of KAP-1 Form a Cooperative Unit That Recruits a Novel Isoform of the Mi-2α Subunit of NuRD. Genes & Development, 15, 428-443.
https://doi.org/10.1101/gad.869501
[19]  Kosuge, M., Ito, J. and Hamada, M. (2024) Landscape of Evolutionary Arms Races between Transposable Elements and KRAB-ZFP Family. Scientific Reports, 14, Article No. 23358.
https://doi.org/10.1038/s41598-024-73752-7
[20]  Gao, S., Hsieh, C., Zhou, J. and Shemshedini, L. (2013) Zinc Finger 280B Regulates SGCα1 and P53 in Prostate Cancer Cells. PLOS ONE, 8, e78766.
https://doi.org/10.1371/journal.pone.0078766
[21]  Tao, C., Luo, J., Tang, J., Zhou, D., Feng, S., Qiu, Z., et al. (2020) The Tumor Suppressor Zinc Finger Protein 471 Suppresses Breast Cancer Growth and Metastasis through Inhibiting AKT and Wnt/β-Catenin Signaling. Clinical Epigenetics, 12, Article No. 173.
https://doi.org/10.1186/s13148-020-00959-6
[22]  Xiang, S., Xiang, T., Xiao, Q., Li, Y., Shao, B. and Luo, T. (2017) Zinc-Finger Protein 545 Is Inactivated Due to Promoter Methylation and Functions as a Tumor Suppressor through the Wnt/β-Catenin, PI3K/AKT and MAPK/ERK Signaling Pathways in Colorectal Cancer. International Journal of Oncology, 51, 801-811.
https://doi.org/10.3892/ijo.2017.4064
[23]  Zhang, C., Xiang, T., Li, S., Ye, L., Feng, Y., Pei, L., et al. (2018) The Novel 19q13 KRAB Zinc-Finger Tumour Suppressor ZNF382 Is Frequently Methylated in Oesophageal Squamous Cell Carcinoma and Antagonises Wnt/β-Catenin Signalling. Cell Death & Disease, 9, Article No. 573.
https://doi.org/10.1038/s41419-018-0604-z
[24]  Liu, Y., Yin, W., Wang, J., Lei, Y., Sun, G., Li, W., et al. (2019) KRAB-Zinc Finger Protein ZNF268A Deficiency Attenuates the Virus-Induced Pro-Inflammatory Response by Preventing IKK Complex Assembly. Cells, 8, Article 1604.
https://doi.org/10.3390/cells8121604
[25]  Wang, T., Wang, X., Xu, J., Wu, X., Qiu, H., Yi, H., et al. (2012) Overexpression of the Human ZNF300 Gene Enhances Growth and Metastasis of Cancer Cells through Activating NF‐κB Pathway. Journal of Cellular and Molecular Medicine, 16, 1134-1145.
https://doi.org/10.1111/j.1582-4934.2011.01388.x
[26]  高梅. KRAB型锌指蛋白家族中p53调控分子的筛选及功能研究[D]: [硕士学位论文]. 济南: 山东师范大学, 2009.
[27]  Olcina, M.M., Leszczynska, K.B., Senra, J.M., Isa, N.F., Harada, H. and Hammond, E.M. (2015) H3K9me3 Facilitates Hypoxia-Induced P53-Dependent Apoptosis through Repression of APAK. Oncogene, 35, 793-799.
https://doi.org/10.1038/onc.2015.134
[28]  Tian, C., Xing, G., Xie, P., Lu, K., Nie, J., Wang, J., et al. (2009) KRAB-Type Zinc-Finger Protein APAK Specifically Regulates P53-Dependent Apoptosis. Nature Cell Biology, 11, 580-591.
https://doi.org/10.1038/ncb1864
[29]  Yuan, L., Tian, C., Wang, H., Song, S., Li, D., Xing, G., et al. (2012) APAK Competes with P53 for Direct Binding to Intron 1 of p53AIP1 to Regulate Apoptosis. EMBO reports, 13, 363-370.
https://doi.org/10.1038/embor.2012.10
[30]  Zhang, X., Zheng, Q., Yue, X., Yuan, Z., Ling, J., Yuan, Y., et al. (2022) ZNF498 Promotes Hepatocellular Carcinogenesis by Suppressing p53-Mediated Apoptosis and Ferroptosis via the Attenuation of p53 Ser46 Phosphorylation. Journal of Experimental & Clinical Cancer Research, 41, Article No. 79.
https://doi.org/10.1186/s13046-022-02288-3
[31]  An, N., Peng, H., Hou, M., Su, D., Wang, L., Shen, X., et al. (2023) The Zinc Figure Protein ZNF575 Impairs Colorectal Cancer Growth via Promoting P53 Transcription. Oncology Research, 31, 307-316.
https://doi.org/10.32604/or.2023.028564
[32]  Chugh, R.M., Bhanja, P., Zitter, R., Gunewardena, S., Badkul, R. and Saha, S. (2025) Modulation of β-Catenin Promotes WNT Expression in Macrophages and Mitigates Intestinal Injury. Cell Communication and Signaling, 23, Article No. 78.
https://doi.org/10.1186/s12964-025-02065-7
[33]  Koelman, E.M.R., Yeste-Vázquez, A. and Grossmann, T.N. (2022) Targeting the Interaction of β-Catenin and TCF/LEF Transcription Factors to Inhibit Oncogenic Wnt Signaling. Bioorganic & Medicinal Chemistry, 70, Article 116920.
https://doi.org/10.1016/j.bmc.2022.116920
[34]  Chen, L., Wu, X., Xie, H., Yao, N., Xia, Y., Ma, G., et al. (2019) ZFP57 Suppress Proliferation of Breast Cancer Cells through Down-Regulation of Mest-Mediated Wnt/β-Catenin Signalling Pathway. Cell Death & Disease, 10, Article No. 169.
https://doi.org/10.1038/s41419-019-1335-5
[35]  Zhan, W., Li, Y., Liu, X., Zheng, C. and Fu, Y. (2020) ZNF671 Inhibits the Proliferation and Metastasis of NSCLC via the Wnt/β-Catenin Pathway. Cancer Management and Research, 12, 599-610.
https://doi.org/10.2147/cmar.s235933
[36]  Capece, D., Verzella, D., Tessitore, A., Alesse, E., Capalbo, C. and Zazzeroni, F. (2018) Cancer Secretome and Inflammation: The Bright and the Dark Sides of NF-κB. Seminars in Cell & Developmental Biology, 78, 51-61.
https://doi.org/10.1016/j.semcdb.2017.08.004
[37]  Deka, K. and Li, Y. (2023) Transcriptional Regulation during Aberrant Activation of NF-κB Signalling in Cancer. Cells, 12, Article 788.
https://doi.org/10.3390/cells12050788
[38]  Seaton, G., Smith, H., Brancale, A., Westwell, A.D. and Clarkson, R. (2024) Multifaceted Roles for BCL3 in Cancer: A Proto-Oncogene Comes of Age. Molecular Cancer, 23, Article No. 7.
https://doi.org/10.1186/s12943-023-01922-8
[39]  Taniguchi, K. and Karin, M. (2018) NF-κB, Inflammation, Immunity and Cancer: Coming of Age. Nature Reviews Immunology, 18, 309-324.
https://doi.org/10.1038/nri.2017.142
[40]  Wang, W., Guo, M., Hu, L., Cai, J., Zeng, Y., Luo, J., et al. (2012) The Zinc Finger Protein ZNF268 Is Overexpressed in Human Cervical Cancer and Contributes to Tumorigenesis via Enhancing NF-κB Signaling. Journal of Biological Chemistry, 287, 42856-42866.
https://doi.org/10.1074/jbc.m112.399923
[41]  Catapano, R., Sepe, L., Toscano, E., Paolella, G., Chiurazzi, F., Barbato, S.P., et al. (2022) Biological Relevance of ZNF224 Expression in Chronic Lymphocytic Leukemia and Its Implication in NF-κB Pathway Regulation. Frontiers in Molecular Biosciences, 9, Article 1010984.
https://doi.org/10.3389/fmolb.2022.1010984
[42]  Quenneville, S., Turelli, P., Bojkowska, K., Raclot, C., Offner, S., Kapopoulou, A., et al. (2012) The KRAB-ZFP/KAP1 System Contributes to the Early Embryonic Establishment of Site-Specific DNA Methylation Patterns Maintained during Development. Cell Reports, 2, 766-773.
https://doi.org/10.1016/j.celrep.2012.08.043
[43]  Liu, H., Wei, Q., Huang, C., Zhang, Y. and Guo, Z. (2017) Potential Roles of Intrinsic Disorder in Maternal-Effect Proteins Involved in the Maintenance of DNA Methylation. International Journal of Molecular Sciences, 18, Article 1898.
https://doi.org/10.3390/ijms18091898
[44]  孙冉. 1.ZNF471在人食管鳞状细胞癌中作用和机制研究2.IRF4在食管鳞状细胞癌患者中的预后意义研究[D]: [博士学位论文]. 重庆: 重庆医科大学, 2019.
[45]  范伟荣. 转录因子ZFP57促进卵巢癌发生发展的作用及其分子机制研究[D]: [博士学位论文]. 广州: 南方医科大学, 2023.
[46]  Wang, X., Yao, L., Li, Z., Zhang, J., Ruan, M., Mulati, Y., et al. (2024) ZNF471 Interacts with BANP to Reduce Tumour Malignancy by Inactivating PI3K/Akt/mTOR Signalling but Is Frequently Silenced by Aberrant Promoter Methylation in Renal Cell Carcinoma. International Journal of Biological Sciences, 20, 643-663.
https://doi.org/10.7150/ijbs.89785
[47]  赵佳. ZNF526在肝癌中的作用及机制研究[D]: [硕士学位论文]. 重庆: 中南大学, 2022.
[48]  董科. ZNF8特异性促进乳腺癌肺转移功能和作用机制的研究[D]: [硕士学位论文]. 济南: 山东大学, 2020.
[49]  Lin, L., Chuang, C., Li, C., Liao, C., Cheng, C., Cheng, T., et al. (2010) ZBRK1 Acts as a Metastatic Suppressor by Directly Regulating MMP9 in Cervical Cancer. Cancer Research, 70, 192-201.
https://doi.org/10.1158/0008-5472.can-09-2641
[50]  Chong, Y., Zhang, K., Zeng, Y., Chen, Q., Feng, Q., Cui, N., et al. (2024) ZNF281 Facilitates the Invasion of Cervical Cancer Cell Both in Vivo and in Vitro. Cancers, 16, Article 3717.
https://doi.org/10.3390/cancers16213717
[51]  Sayers, E.W., Bolton, E.E., Brister, J.R., Canese, K., Chan, J., Comeau, D.C., et al. (2021) Database Resources of the National Center for Biotechnology Information. Nucleic Acids Research, 50, D20-D26.
https://doi.org/10.1093/nar/gkab1112
[52]  Heyliger, S.O., Soliman, K.F.A., Saulsbury, M.D. and Reams, R.R. (2022) Prognostic Relevance of ZNF844 and Chr 19p13.2 KRAB-Zinc Finger Proteins in Clear Cell Renal Carcinoma. Cancer Genomics-Proteomics, 19, 305-327.
https://doi.org/10.21873/cgp.20322

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133