|
基于超支配自适应收敛性计算的超多目标进化算法研究
|
Abstract:
针对超多目标优化问题中传统帕累托支配失效及参考点选择对收敛性度量的关键影响,提出一种基于超支配自适应收敛性计算的超多目标进化算法(HACCEA)。该算法通过超支配方法有效区分非支配解与支配解,结合自适应收敛性计算机制动态调整参考点,以精确估计帕累托前沿(PF)形状,进而优化收敛性度量。环境选择阶段采用行列式点过程平衡收敛性与多样性。在IGD指标上,相较于4个先进算法,HACCEA优势显著,鲁棒性强。
In order to address the failure of traditional Pareto domination and the critical influence of reference point selection on the convergence in many-objective optimization problems, a many-objective evolutionary algorithm based on hyper-dominance adaptive convergence calculation (HACCEA) is proposed. The algorithm effectively distinguishes between non-dominated and dominated solutions through the hyper-dominance method, and dynamically adjusts the reference points by combining with the adaptive convergence calculation mechanism in order to accurately estimate the shape of the Pareto front (PF), and then optimize the convergence. The environmental selection phase uses a determinantal point process to balance convergence and diversity. On the IGD indicator, HACCEA shows significant advantages and excellent robustness compared to the four state-of-the-art algorithms.
[1] | Tostado-Véliz, M., Kamel, S., Aymen, F. and Jurado, F. (2022) A Novel Hybrid Lexicographic-IGDT Methodology for Robust Multi-Objective Solution of Home Energy Management Systems. Energy, 253, Article ID: 124146. https://doi.org/10.1016/j.energy.2022.124146 |
[2] | Zhang, M., Wang, L., Li, W., Hu, B., Li, D. and Wu, Q. (2021) Many-Objective Evolutionary Algorithm with Adaptive Reference Vector. Information Sciences, 563, 70-90. https://doi.org/10.1016/j.ins.2021.01.015 |
[3] | 熊志坚. 面向超多目标优化问题的进化算法研究[D]: [博士学位论文]. 秦皇岛: 燕山大学, 2022. |
[4] | Tian, Y., Cheng, R., Zhang, X., Su, Y. and Jin, Y. (2019) A Strengthened Dominance Relation Considering Convergence and Diversity for Evolutionary Many-Objective Optimization. IEEE Transactions on Evolutionary Computation, 23, 331-345. https://doi.org/10.1109/tevc.2018.2866854 |
[5] | Sun, Y., Yen, G.G. and Yi, Z. (2019) IGD Indicator-Based Evolutionary Algorithm for Many-Objective Optimization Problems. IEEE Transactions on Evolutionary Computation, 23, 173-187. https://doi.org/10.1109/tevc.2018.2791283 |
[6] | Wang, M., Ge, F., Chen, D. and Liu, H. (2022) A Many-Objective Evolutionary Algorithm with Adaptive Convergence Calculation. Applied Intelligence, 53, 17260-17291. https://doi.org/10.1007/s10489-022-04296-4 |
[7] | 王梦真. 面向超多目标优化问题的进化算法研究[D]: [博士学位论文]. 淮北: 淮北师范大学, 2023. |
[8] | Zhang, P., Li, J., Li, T. and Chen, H. (2021) A New Many-Objective Evolutionary Algorithm Based on Determinantal Point Processes. IEEE Transactions on Evolutionary Computation, 25, 334-345. https://doi.org/10.1109/tevc.2020.3035825 |
[9] | Liu, Y., Gong, D., Sun, J. and Jin, Y. (2017) A Many-Objective Evolutionary Algorithm Using a One-by-One Selection Strategy. IEEE Transactions on Cybernetics, 47, 2689-2702. https://doi.org/10.1109/tcyb.2016.2638902 |
[10] | Huband, S., Hingston, P., Barone, L. and While, L. (2006) A Review of Multiobjective Test Problems and a Scalable Test Problem Toolkit. IEEE Transactions on Evolutionary Computation, 10, 477-506. https://doi.org/10.1109/tevc.2005.861417 |
[11] | Tian, Y., Cheng, R., Zhang, X. and Jin, Y. (2017) Platemo: A MATLAB Platform for Evolutionary Multi-Objective Optimization [Educational Forum]. IEEE Computational Intelligence Magazine, 12, 73-87. https://doi.org/10.1109/mci.2017.2742868 |