全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

免疫反应与IBD的发展
Immune Response and the Development of IBD

DOI: 10.12677/jcpm.2025.42284, PP. 1122-1131

Keywords: IBD,免疫反应,综述
IBD
, Immune Response, Overview

Full-Text   Cite this paper   Add to My Lib

Abstract:

炎症性肠病(Inflammatory Bowel Disease, IBD)是一种涉及肠道免疫失调、炎性细胞浸润、肠粘膜屏障破坏、肠腔内炎症细胞及细胞因子聚集等复杂病理过程的疾病。近年来在全球范围内发病率显著增加,并造成巨大的疾病负担。免疫反应包括先天性免疫应答及适应性免疫应答,在调节人类健康和疾病中起着至关重要的作用,同样,在IBD的发病过程中,其炎症细胞和细胞因子也发挥了极其重要的调控作用。本文对近年来IBD免疫反应及调控机制方面的研究进展进行综述,以期为IBD的研究及治疗提供新的思路和策略。
Inflammatory Bowel Disease (IBD) is a disease involving complex pathological processes such as intestinal immune disorders, inflammatory cell infiltration, intestinal mucosal barrier destruction, intestinal inflammatory cells and cytokine aggregation. In recent years, the incidence rate has increased significantly worldwide and caused a huge burden of disease. Immune response, including congenital immune response and adaptive immune response, plays a vital role in regulating human health and disease. Similarly, in the onset of IBD, its inflammatory cells and cytokines also play an extremely important regulatory role. This article reviews the research progress of IBD immune response and regulatory mechanism in recent years, with a view to providing new ideas and strategies for the research and treatment of IBD.

References

[1]  Kaplan, G.G. (2015) The Global Burden of IBD: From 2015 to 2025. Nature Reviews Gastroenterology & Hepatology, 12, 720-727.
https://doi.org/10.1038/nrgastro.2015.150
[2]  Ng, S.C., Shi, H.Y., Hamidi, N., Underwood, F.E., Tang, W., Benchimol, E.I., et al. (2017) The Worldwide Incidence and Prevalence of Inflammatory Bowel Disease in the 21st Century: A Systematic Review of Population-Based Studies: Digestive Disease Week. Gastroenterology, 152, S970-S971.
https://doi.org/10.1016/s0016-5085(17)33292-4
[3]  Jones, G., Lyons, M., Plevris, N., Jenkinson, P.W., Bisset, C., Burgess, C., et al. (2019) IBD Prevalence in Lothian, Scotland, Derived by Capture-Recapture Methodology. Gut, 68, 1953-1960.
https://doi.org/10.1136/gutjnl-2019-318936
[4]  Zhang, H., Zhang, M., Chen, X., Guo, M., Zhou, R., Lv, H., et al. (2022) Risk of Malignancy in Patients with Inflammatory Bowel Disease: A Population‐Based Cohort Study from China. International Journal of Cancer, 150, 1770-1778.
https://doi.org/10.1002/ijc.33932
[5]  Guan, Q. (2019) A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. Journal of Immunology Research, 2019, Article ID: 7247238.
https://doi.org/10.1155/2019/7247238
[6]  Pandian, N. and Kanneganti, T. (2022) Panoptosis: A Unique Innate Immune Inflammatory Cell Death Modality. The Journal of Immunology, 209, 1625-1633.
https://doi.org/10.4049/jimmunol.2200508
[7]  Zhou, G., Yu, L., Fang, L., Yang, W., Yu, T., Miao, Y., et al. (2017) CD177+ Neutrophils as Functionally Activated Neutrophils Negatively Regulate IBD. Gut, 67, 1052-1063.
https://doi.org/10.1136/gutjnl-2016-313535
[8]  Friedrich, M., Pohin, M., Jackson, M.A., Korsunsky, I., Bullers, S.J., Rue-Albrecht, K., et al. (2021) Il-1-Driven Stromal-Neutrophil Interactions Define a Subset of Patients with Inflammatory Bowel Disease That Does Not Respond to Therapies. Nature Medicine, 27, 1970-1981.
https://doi.org/10.1038/s41591-021-01520-5
[9]  Camilleri, M., Madsen, K., Spiller, R., Van Meerveld, B.G. and Verne, G.N. (2012) Intestinal Barrier Function in Health and Gastrointestinal Disease. Neurogastroenterology & Motility, 24, 503-512.
https://doi.org/10.1111/j.1365-2982.2012.01921.x
[10]  Foerster, E.G., Mukherjee, T., Cabral-Fernandes, L., Rocha, J.D.B., Girardin, S.E. and Philpott, D.J. (2021) How Autophagy Controls the Intestinal Epithelial Barrier. Autophagy, 18, 86-103.
https://doi.org/10.1080/15548627.2021.1909406
[11]  Wardle, E. (2010) Th-17 Lymphocytes. Saudi Journal of Kidney Diseases and Transplantation: An Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia, 21, 954-956.
[12]  Nissilä, E., Korpela, K., Lokki, A.I., Paakkanen, R., Jokiranta, S., de Vos, W.M., et al. (2017) C4B Gene Influences Intestinal Microbiota through Complement Activation in Patients with Paediatric-Onset Inflammatory Bowel Disease. Clinical and Experimental Immunology, 190, 394-405.
https://doi.org/10.1111/cei.13040
[13]  Steinbach, E.C. and Plevy, S.E. (2014) The Role of Macrophages and Dendritic Cells in the Initiation of Inflammation in IBD. Inflammatory Bowel Diseases, 20, 166-175.
https://doi.org/10.1097/mib.0b013e3182a69dca
[14]  Mateer, S.W., Mathe, A., Bruce, J., Liu, G., Maltby, S., Fricker, M., et al. (2018) IL-6 Drives Neutrophil-Mediated Pulmonary Inflammation Associated with Bacteremia in Murine Models of Colitis. The American Journal of Pathology, 188, 1625-1639.
https://doi.org/10.1016/j.ajpath.2018.03.016
[15]  Stark, M.A., Huo, Y., Burcin, T.L., Morris, M.A., Olson, T.S. and Ley, K. (2005) Phagocytosis of Apoptotic Neutrophils Regulates Granulopoiesis via IL-23 and IL-17. Immunity, 22, 285-294.
https://doi.org/10.1016/j.immuni.2005.01.011
[16]  dos Santos Ramos, A., Viana, G.C.S., de Macedo Brigido, M. and Almeida, J.F. (2021) Neutrophil Extracellular Traps in Inflammatory Bowel Diseases: Implications in Pathogenesis and Therapeutic Targets. Pharmacological Research, 171, Article ID: 105779.
https://doi.org/10.1016/j.phrs.2021.105779
[17]  Fan, F.Y., Sang, L.X., et al. (2017) Catechins and Their Therapeutic Benefits to Inflammatory Bowel Disease. Molecules, 22, Article 484.
[18]  Yao, H. and Tang, G. (2022) Macrophages in Intestinal Fibrosis and Regression. Cellular Immunology, 381, Article ID: 104614.
https://doi.org/10.1016/j.cellimm.2022.104614
[19]  Spalinger, M.R., Sayoc-Becerra, A., Ordookhanian, C., Canale, V., Santos, A.N., King, S.J., et al. (2020) The JAK Inhibitor Tofacitinib Rescues Intestinal Barrier Defects Caused by Disrupted Epithelial-Macrophage Interactions. Journal of Crohn’s and Colitis, 15, 471-484.
https://doi.org/10.1093/ecco-jcc/jjaa182
[20]  Liu, X., Zhou, M., Dai, Z., Luo, S., Shi, Y., He, Z., et al. (2022) Salidroside Alleviates Ulcerative Colitis via Inhibiting Macrophage Pyroptosis and Repairing the Dysbacteriosis‐Associated Th17/Treg Imbalance. Phytotherapy Research, 37, 367-382.
https://doi.org/10.1002/ptr.7636
[21]  Kalischuk, L.D. and Buret, A.G. (2010) A Role for Campylobacter Jejuni-Induced Enteritis in Inflammatory Bowel Disease? American Journal of Physiology-Gastrointestinal and Liver Physiology, 298, G1-G9.
https://doi.org/10.1152/ajpgi.00193.2009
[22]  Wolfgang, H., Bruce, E.S., Steve, L., et al. (2012) Secukinumab, a Human Anti-IL-17A Monoclonal Antibody, for Moderate to Severe Crohn’s Disease: Unexpected Results of a Randomised, Double-Blind Placebo-Controlled Trial. Gut, 61, 1693-1700.
[23]  Ananthakrishnan, A.N., Bernstein, C.N., Iliopoulos, D., Macpherson, A., Neurath, M.F., Ali, R.A.R., et al. (2017) Environmental Triggers in IBD: A Review of Progress and Evidence. Nature Reviews Gastroenterology & Hepatology, 15, 39-49.
https://doi.org/10.1038/nrgastro.2017.136
[24]  Faleiro, R., Liu, J., Karunarathne, D., Edmundson, A., Winterford, C., Nguyen, T.H., et al. (2019) Crohn’s Disease Is Facilitated by a Disturbance of Programmed Death‐1 Ligand 2 on Blood Dendritic Cells. Clinical & Translational Immunology, 8, e1071.
https://doi.org/10.1002/cti2.1071
[25]  Xavier, R.J. and Podolsky, D.K. (2007) Unravelling the Pathogenesis of Inflammatory Bowel Disease. Nature, 448, 427-434.
https://doi.org/10.1038/nature06005
[26]  Efferth, T. and Oesch, F. (2021) The Immunosuppressive Activity of Artemisinin‐Type Drugs Towards Inflammatory and Autoimmune Diseases. Medicinal Research Reviews, 41, 3023-3061.
https://doi.org/10.1002/med.21842
[27]  Yuan, S., Wang, M., Han, J., Feng, C., Wang, M., Wang, M., et al. (2023) Improved Colonic Inflammation by Nervonic Acid via Inhibition of NF-κB Signaling Pathway of DSS-Induced Colitis Mice. Phytomedicine, 112, Article ID: 154702.
https://doi.org/10.1016/j.phymed.2023.154702
[28]  Shimizu, M. (2017) Multifunctions of Dietary Polyphenols in the Regulation of Intestinal Inflammation. Journal of Food and Drug Analysis, 25, 93-99.
https://doi.org/10.1016/j.jfda.2016.12.003
[29]  Li, Z., Yu, E., Wang, G., Yu, D., Zhang, K., Gong, W., et al. (2018) Broad Bean (Vicia faba L.) Induces Intestinal Inflammation in Grass Carp (Ctenopharyngodon idellus C. et V) by Increasing Relative Abundances of Intestinal Gram-Negative and Flagellated Bacteria. Frontiers in Microbiology, 9, Article 1913.
https://doi.org/10.3389/fmicb.2018.01913
[30]  Wei, W., Mu, S., Han, Y., Chen, Y., Kuang, Z., Wu, X., et al. (2022) Gpr174 Knockout Alleviates DSS-Induced Colitis via Regulating the Immune Function of Dendritic Cells. Frontiers in Immunology, 13, Article 841254.
https://doi.org/10.3389/fimmu.2022.841254
[31]  Yao, X., Huang, J., Zhong, H., Shen, N., Faggioni, R., Fung, M., et al. (2014) Targeting Interleukin-6 in Inflammatory Autoimmune Diseases and Cancers. Pharmacology & Therapeutics, 141, 125-139.
https://doi.org/10.1016/j.pharmthera.2013.09.004
[32]  Li, X., Ling, Y., Huang, X., Zhou, T., Wu, S., Zhang, S., et al. (2023) Rosa roxburghii Tratt Fruit Extract Prevents DSS-Induced Ulcerative Colitis in Mice by Modulating the Gut Microbiota and the IL-17 Signaling Pathway. Nutrients, 15, Article 4560.
https://doi.org/10.3390/nu15214560
[33]  Segers, A. and de Vos, W.M. (2023) Mode of Action of Akkermansia muciniphila in the Intestinal Dialogue: Role of Extracellular Proteins, Metabolites and Cell Envelope Components. Microbiome Research Reports, 2, Article 6.
https://doi.org/10.20517/mrr.2023.05
[34]  Hershberg, R.M. (2002) V. Polarized Compartmentalization of Antigen Processing and Toll-Like Receptor Signaling in Intestinal Epithelial Cells. American Journal of Physiology-Gastrointestinal and Liver Physiology, 283, G833-G839.
https://doi.org/10.1152/ajpgi.00208.2002
[35]  Heller, F., Florian, P., Bojarski, C., Richter, J., Christ, M., Hillenbrand, B., et al. (2005) Interleukin-13 Is the Key Effector Th2 Cytokine in Ulcerative Colitis That Affects Epithelial Tight Junctions, Apoptosis, and Cell Restitution. Gastroenterology, 129, 550-564.
https://doi.org/10.1016/j.gastro.2005.05.002
[36]  Danese, S. (2011) Immune and Nonimmune Components Orchestrate the Pathogenesis of Inflammatory Bowel Disease. American Journal of Physiology-Gastrointestinal and Liver Physiology, 300, G716-G722.
https://doi.org/10.1152/ajpgi.00472.2010
[37]  Ricciardelli, I., Lindley, K.J., Londei, M. and Quaratino, S. (2008) Anti Tumour Necrosis‐α Therapy Increases the Number of FOXP3+ Regulatory T Cells in Children Affected by Crohn’s Disease. Immunology, 125, 178-183.
https://doi.org/10.1111/j.1365-2567.2008.02839.x
[38]  Ala, M. (2021) Tryptophan Metabolites Modulate Inflammatory Bowel Disease and Colorectal Cancer by Affecting Immune System. International Reviews of Immunology, 41, 326-345.
https://doi.org/10.1080/08830185.2021.1954638
[39]  Wu, J., Wei, Z., Cheng, P., Qian, C., Xu, F., Yang, Y., et al. (2020) Rhein Modulates Host Purine Metabolism in Intestine through Gut Microbiota and Ameliorates Experimental Colitis. Theranostics, 10, 10665-10679.
https://doi.org/10.7150/thno.43528
[40]  Fu, Y., Ni, J., Chen, J., Ma, G., Zhao, M., Zhu, S., et al. (2020) Dual-Functionalized MSCs That Express CX3CR1 and IL-25 Exhibit Enhanced Therapeutic Effects on Inflammatory Bowel Disease. Molecular Therapy, 28, 1214-1228.
https://doi.org/10.1016/j.ymthe.2020.01.020
[41]  Liu, Y., Tang, B., Wang, F., Tang, L., Lei, Y., Luo, Y., et al. (2020) Parthenolide Ameliorates Colon Inflammation through Regulating Treg/Th17 Balance in a Gut Microbiota-Dependent Manner. Theranostics, 10, 5225-5241.
https://doi.org/10.7150/thno.43716
[42]  Xia, X., Zhang, Y., Zhu, L., Ying, Y., Hao, W., Wang, L., et al. (2023) Liquiritin Apioside Alleviates Colonic Inflammation and Accompanying Depression-Like Symptoms in Colitis by Gut Metabolites and the Balance of Th17/Treg. Phytomedicine, 120, Article ID: 155039.
https://doi.org/10.1016/j.phymed.2023.155039
[43]  徐小芳, 吕小平. PTGER4基因与炎症性肠病关系的研究进展[J]. 山东医药, 2019, 59(8): 100-103.
[44]  Yu, L., Zhou, B., Zhu, Y., Li, L., Zhong, Y., Zhu, L., et al. (2023) HSF1 Promotes CD69+ Treg Differentiation to Inhibit Colitis Progression. Theranostics, 13, 1892-1905.
https://doi.org/10.7150/thno.78078

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133