|
基于生物信息学探究肺腺癌miRNA-mRNA调控网络中的靶点基因
|
Abstract:
目的:本研究主要针对肺腺癌,旨在分析其组织中的差异表达基因,并探究miRNA-mRNA调控网络的关系,寻找潜在的分子靶点和治疗靶点。方法:通过下载GEO数据库中GSE74190和GSE140797数据,结合R语言进行数据分析,筛选出在两组芯片数据中具有差异表达的基因,即差异表达基因(differentially expressed genes, DGEs),作为后续研究的重点。对两组肺腺癌数据的DGEs进行miRNA-mRNA调控网络的构建,在CYTOSCAPE中进行可视化,得到关键调控网络与基因靶点,使用GEPIA2验证之前关键基因的表达与患者预后总生存率的关系。结果:miRNA-mRNA调控网络中显示有3个差异表达的miRNA基因均下调分别为hsa-miR-486-5p、hsa-miR-139-5p、hsa-miR-338-3p。在mRNA组中有7个差异表达基因,六个下调基因为DES、EMP2、COL6A6、PIK3R1、GDF10、LRRN3。一个上调基因为COL1A1。结论:探究差异miRNA在肺腺癌中通过调控下游靶向mRNA,建立miRNA-mRNA调控网络,使得我们对于肺腺癌中的基因调控机制更加深入了解,对肺腺癌中的生物学过程更加深入了解。本研究通过对关键miRNA-mRNA调控网络的构建,为肺腺癌的研究与治疗提供了新的靶点。
Objective: To explore differentially expressed genes in lung adenocarcinoma tissue, study the relationship between miRNA-mRNA regulatory networks in lung adenocarcinoma, and identify potential molecular and therapeutic targets for lung adenocarcinoma. Method: Download samples from GEO, analyze data using R language based on GSE74190 and GSE140797 data and select genes with significant expression differences between the two sets of chip data, namely differentially expressed genes. Differently expressed genes (DGEs), and miRNA-mRNA regulatory networks were constructed on DGEs from two sets of lung adenocarcinoma data, visualized in CYTOSCAPE to obtain key regulatory networks and gene targets. GEPIA2 was used to validate the relationship between the expression of previous key genes and the overall survival rate of patients’ prognosis. Results: The results showed that three differentially expressed miRNA genes were downregulated in the miRNA-mRNA regulatory network, namely hsa-miR-486-5p, hsa-miR-139-5p, and hsa-miR-338-3p. There are 7 differentially expressed genes in the mRNA group, and six downregulated genes are DES, EMP2, COL6A6, PIK3R1, GDF10, and LRRN3. One upregulated gene is COL1A1. Conclusion: Exploring differential miRNAs in lung adenocarcinoma by regulating downstream targeted mRNA, and establishing a miRNA-mRNA regulatory network, enables us to have a deeper understanding of the gene regulatory mechanisms in lung adenocarcinoma and the biological processes in lung adenocarcinoma. This study provides new targets for the research and treatment of lung adenocarcinoma by constructing key miRNA-mRNA regulatory networks.
[1] | 刘凤森, 平玉, 张毅. 肺腺癌中成纤维细胞亚群临床及免疫特征的生物信息学分析[J]. 中国免疫学杂志, 2022, 38(17): 2118-2122, 2128. |
[2] | Zhang, L., Liu, Y., Zhuang, J., Guo, J., Li, Y., Dong, Y., et al. (2023) Identification of Key Genes and Biological Pathways in Lung Adenocarcinoma by Integrated Bioinformatics Analysis. World Journal of Clinical Cases, 11, 5504-5518. https://doi.org/10.12998/wjcc.v11.i23.5504 |
[3] | Sun, H., Zhang, M., Li, L. and Huang, Z. (2020) ALDH3B1 Is an Independent Prognostic Biomarker of Lung Adenocarcinoma. Technology in Cancer Research & Treatment, 19, 1-9. https://doi.org/10.1177/1533033820946018 |
[4] | Zhang, G., Dong, R., Kong, D., Liu, B., Zha, Y. and Luo, M. (2022) The Effect of GLUT1 on the Survival Rate and Immune Cell Infiltration of Lung Adenocarcinoma and Squamous Cell Carcinoma: A Meta and Bioinformatics Analysis. Anti-Cancer Agents in Medicinal Chemistry, 22, 223-238. https://doi.org/10.2174/1871520621666210708115406 |
[5] | Zhai, W., Duan, F., Wang, Y., Wang, J., Zhao, Z., Lin, Y., et al. (2022) Integrative Analysis of Bioinformatics and Machine Learning Algorithms Identifies a Novel Diagnostic Model Based on Costimulatory Molecule for Predicting Immune Microenvironment Status in Lung Adenocarcinoma. The American Journal of Pathology, 192, 1433-1447. https://doi.org/10.1016/j.ajpath.2022.06.015 |
[6] | Li, J., Yu, X., Liu, Q., Ou, S., Li, K., Kong, Y., et al. (2019) Screening of Important Lncrnas Associated with the Prognosis of Lung Adenocarcinoma, Based on Integrated Bioinformatics Analysis. Molecular Medicine Reports, 19, 4067-4080. https://doi.org/10.3892/mmr.2019.10061 |
[7] | Nacer, D.F., Liljedahl, H., Karlsson, A., Lindgren, D. and Staaf, J. (2021) Pan-Cancer Application of a Lung-Adenocarcinoma-Derived Gene-Expression-Based Prognostic Predictor. Briefings in Bioinformatics, 22, bbab154. https://doi.org/10.1093/bib/bbab154 |
[8] | Nguyen, T.T., Lee, H., Burt, B.M., Wu, J., Zhang, J., Amos, C.I., et al. (2022) A Lepidic Gene Signature Predicts Patient Prognosis and Sensitivity to Immunotherapy in Lung Adenocarcinoma. Genome Medicine, 14, Article No. 5. https://doi.org/10.1186/s13073-021-01010-w |
[9] | Qin, J., Xu, Z., Deng, K., Qin, F., Wei, J., Yuan, L., et al. (2021) Development of a Gene Signature Associated with Iron Metabolism in Lung Adenocarcinoma. Bioengineered, 12, 4556-4568. https://doi.org/10.1080/21655979.2021.1954840 |
[10] | 张文婷, 刘亚锋, 胡春晓, 等. 肺腺癌预后代谢相关基因的生物信息学分析[J]. 细胞与分子免疫学杂志, 2023, 39(1): 41-48. |
[11] | Carmeliet, P. and Jain, R.K. (2011) Molecular Mechanisms and Clinical Applications of Angiogenesis. Nature, 473, 298-307. https://doi.org/10.1038/nature10144 |
[12] | Yeh, Y., Hsiao, H., Yeh, Y., Chen, T. and Li, T. (2018) Inflammatory Interferon Activates HIF-1α-Mediated Epithelial-To-Mesenchymal Transition via PI3K/AKT/mTOR Pathway. Journal of Experimental & Clinical Cancer Research, 37, Article No. 70. https://doi.org/10.1186/s13046-018-0730-6 |
[13] | Patil, N., Allgayer, H. and Leupold, J.H. (2020) Micrornas in the Tumor Microenvironment. In: Birbrair, A., Ed., Tumor Microenvironment, Springer 1-31. https://doi.org/10.1007/978-3-030-50224-9_1 |
[14] | Yi, M., Li, A., Zhou, L., Chu, Q., Luo, S. and Wu, K. (2021) Immune Signature-Based Risk Stratification and Prediction of Immune Checkpoint Inhibitor’s Efficacy for Lung Adenocarcinoma. Cancer Immunology, Immunotherapy, 70, 1705-1719. https://doi.org/10.1007/s00262-020-02817-z |
[15] | 邓彪, 陈春源, 黄裕锋, 等. 肺腺癌患者代谢相关基因和免疫相关预后模型的建立[J]. 中国免疫学杂志, 2022, 38(15): 1851-1860. |
[16] | Yu, H., Pang, Z., Li, G. and Gu, T. (2020) Bioinformatics Analysis of Differentially Expressed miRNAs in Non‐Small Cell Lung Cancer. Journal of Clinical Laboratory Analysis, 35, e23588. https://doi.org/10.1002/jcla.23588 |
[17] | Song, J., Sun, Y., Cao, H., Liu, Z., Xi, L., Dong, C., et al. (2021) A Novel Pyroptosis-Related LncRNA Signature for Prognostic Prediction in Patients with Lung Adenocarcinoma. Bioengineered, 12, 5932-5949. https://doi.org/10.1080/21655979.2021.1972078 |
[18] | Xiao, Y., Hassani, M., Moghaddam, M.B., Fazilat, A., Ojarudi, M. and Valilo, M. (2025) Contribution of Tumor Microenvironment (TME) to Tumor Apoptosis, Angiogenesis, Metastasis, and Drug Resistance. Medical Oncology, 42, Article No. 108. https://doi.org/10.1007/s12032-025-02675-8 |
[19] | Zhang, M., Liu, X., Li, H., Li, R., Liu, X. and Qu, Y. (2018) Elevated mRNA Levels of AURKA, CDC20 and TPX2 Are Associated with Poor Prognosis of Smoking Related Lung Adenocarcinoma Using Bioinformatics Analysis. International Journal of Medical Sciences, 15, 1676-1685. https://doi.org/10.7150/ijms.28728 |
[20] | Deng, H., Huang, Y., Wang, L. and Chen, M. (2020) High Expression of UBB, RAC1, and ITGB1 Predicts Worse Prognosis among Nonsmoking Patients with Lung Adenocarcinoma through Bioinformatics Analysis. BioMed Research International, 2020, Article ID: 2071593. https://doi.org/10.1155/2020/2071593 |