全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Understanding the Basic Reproduction Number (R0): Calculation, Applications, and Limitations in Epidemiology

DOI: 10.4236/ojepi.2025.152018, PP. 272-295

Keywords: R0, Effective Reproduction Number, Epidemic Modeling, Herd Immunity, Vaccination Strategies, SIR Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background: The basic reproduction number ( R 0 ) is a key metric in epidemiology, representing the expected number of secondary infections from a single case in a fully susceptible population. Despite its widespread application, R 0 is often misinterpreted due to its dependence on model assumptions and population dynamics. Understanding its calculation, applications, and limitations is crucial for refining epidemic models and enhancing disease control measures. Objectives: This study examines the mathematical foundations of R 0 , its estimation methods, applications in disease modeling, and limitations. Additionally, it explores the effective reproduction number ( R 0 ) and its role in assessing intervention impacts. Methods: A systematic review of mathematical models, including the SIR, SIRD, and modified SIRD models, was conducted to evaluate various approaches for estimating R 0 . The study also highlights variations in R 0 and the effective reproduction number ( R 0 ) across different infectious diseases, such as measles, influenza, and COVID-19. Results: Findings indicate that R 0 is highly dependent on disease-specific factors, population dynamics, and intervention strategies. While R 0 serves as a useful threshold indicator for disease outbreak potential, R 0 provides a more practical assessment of ongoing transmission dynamics. The

References

[1]  Patil, V.C., Ali, G.S., Nashte, A., Rautdesai, R., Garud, S.K. and Sable, N.P. (2023) Public Health Policy and Infectious Disease Control: Lessons from Recent Outbreaks. South East European Journal of Public Health, XXI, 162-170.
https://www.seejph.com/index.php/seejph/article/view/449
[2]  Peddinti, S. and Sabbani, Y. (2024) Mathematical Modeling of Infectious Disease Spread Using Differential Equations and Epidemiological Insights. Journal of Nonlinear Analysis and Optimization, 15, 114-122.
[3]  Anderson, R.M. and May, R.M. (1991) Infectious Diseases of Humans: Dynamics and Control. Oxford University Press.‏
[4]  Amburi, S., Jalan, V. and Saravanan, S. (2021) Transforming Native Epidemic Models by Using the Machine Learning Approach. Annals of the Romanian Society for Cell Biology, 25, 2891-2899.
[5]  Delamater, P.L., Street, E.J., Leslie, T.F., Yang, Y.T. and Jacobsen, K.H. (2019) Complexity of the Basic Reproduction Number (R0). Emerging Infectious Diseases, 25, 1-4.
https://doi.org/10.3201/eid2501.171901
[6]  Heffernan, J.M., Smith, R.J. and Wahl, L.M. (2005) Perspectives on the Basic Reproductive Ratio. Journal of The Royal Society Interface, 2, 281-293.
https://doi.org/10.1098/rsif.2005.0042
[7]  Roberts, M.G. (2007) The Pluses and Minuses of 0. Journal of The Royal Society Interface, 4, 949-961.
https://doi.org/10.1098/rsif.2007.1031
[8]  Pellis, L., Ball, F. and Trapman, P. (2012) Reproduction Numbers for Epidemic Models with Households and Other Social Structures. I. Definition and Calculation of R0. Mathematical Biosciences, 235, 85-97.
https://doi.org/10.1016/j.mbs.2011.10.009
[9]  Dembek, Z.F., Chekol, T. and Wu, A. (2018) Best Practice Assessment of Disease Modelling for Infectious Disease Outbreaks. Epidemiology and Infection, 146, 1207-1215.
https://doi.org/10.1017/s095026881800119x
[10]  Corteel, M. (2025) Shaping Epidemic Dynamics: An Historical Epistemology Study of the SIR Model. History of the Human Sciences.
https://doi.org/10.1177/09526951251317104
[11]  AlQadi, H. and Bani-Yaghoub, M. (2022) Incorporating Global Dynamics to Improve the Accuracy of Disease Models: Example of a COVID-19 SIR Model. PLOS ONE, 17, e0265815.
https://doi.org/10.1371/journal.pone.0265815
[12]  Amiri Babaei, N., Kröger, M. and Özer, T. (2024) Theoretical Analysis of a SIRD Model with Constant Amount of Alive Population and COVID-19 Applications. Applied Mathematical Modelling, 127, 237-258.
https://doi.org/10.1016/j.apm.2023.12.006
[13]  Giordano, G., Blanchini, F., Bruno, R., Colaneri, P., Di Filippo, A., Di Matteo, A., et al. (2020) Modelling the COVID-19 Epidemic and Implementation of Population-Wide Interventions in Italy. Nature Medicine, 26, 855-860.
https://doi.org/10.1038/s41591-020-0883-7
[14]  Sen, D. and Sen, D. (2021) Use of a Modified SIRD Model to Analyze COVID-19 Data. Industrial & Engineering Chemistry Research, 60, 4251-4260.
https://doi.org/10.1021/acs.iecr.0c04754
[15]  Chen, Y., Liu, F., Yu, Q. and Li, T. (2021) Review of Fractional Epidemic Models. Applied Mathematical Modelling, 97, 281-307.
https://doi.org/10.1016/j.apm.2021.03.044
[16]  Wang, P. and Jia, J. (2019) Stationary Distribution of a Stochastic SIRD Epidemic Model of Ebola with Double Saturated Incidence Rates and Vaccination. Advances in Difference Equations, 2019, Article No. 433.
https://doi.org/10.1186/s13662-019-2352-5
[17]  Zafar, Z.U.A., Rehan, K. and Mushtaq, M. (2017) HIV/AIDS Epidemic Fractional-Order Model. Journal of Difference Equations and Applications, 23, 1298-1315.
https://doi.org/10.1080/10236198.2017.1321640
[18]  Miniguano-Trujillo, A., Pearson, J.W. and Goddard, B.D. (2025) A Constrained Optimisation Framework for Parameter Identification of the SIRD Model. Mathematical Biosciences, 380, Article ID: 109379.
https://doi.org/10.1016/j.mbs.2025.109379
[19]  Tsay, C., Lejarza, F., Stadtherr, M.A. and Baldea, M. (2020) Modeling, State Estimation, and Optimal Control for the US COVID-19 Outbreak. Scientific Reports, 10, Article No. 10711.
https://doi.org/10.1038/s41598-020-67459-8
[20]  Afful, B.A., Safo, G.A., Marri, D., Okyere, E., Ohemeng, M.O. and Kessie, J.A. (2025) Deterministic Optimal Control Compartmental Model for COVID-19 Infection. Modeling Earth Systems and Environment, 11, Article No. 87.
https://doi.org/10.1007/s40808-024-02183-0
[21]  Diekmann, O. and Heesterbeek, J.A.P. (2000) Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation (Vol. 5). John Wiley & Sons.
[22]  Anastassopoulou, C., Russo, L., Tsakris, A. and Siettos, C. (2020) Data-Based Analysis, Modelling and Forecasting of the COVID-19 Outbreak. PLOS ONE, 15, e0230405.
https://doi.org/10.1371/journal.pone.0230405
[23]  Boonpatcharanon, S., Heffernan, J.M. and Jankowski, H. (2022) Estimating the Basic Reproduction Number at the Beginning of an Outbreak. PLOS ONE, 17, e0269306.
https://doi.org/10.1371/journal.pone.0269306
[24]  Diekmann, O., Heesterbeek, J.A.P. and Roberts, M.G. (2013) The Construction of Next-Generation Matrices for Compartmental Epidemic Models. Journal of the Royal Society Interface, 10, Article ID: 20120656.
[25]  Ferguson, N.M., Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin, M., Ghani, A.C., et al. (2020) Impact of Non-Pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare Demand. Imperial College London.
https://doi.org/10.25561/77482
[26]  Southall, E., Ogi-Gittins, Z., Kaye, A.R., Hart, W.S., Lovell-Read, F.A. and Thompson, R.N. (2023) A Practical Guide to Mathematical Methods for Estimating Infectious Disease Outbreak Risks. Journal of Theoretical Biology, 562, Article ID: 111417.
https://doi.org/10.1016/j.jtbi.2023.111417
[27]  Fox, J.P., Elveback, L., Scott, W., Gatewood, L. and Ackerman, E. (1995) Herd Immunity: Basic Concept and Relevance to Public Health Immunization Practices1 American Journal of Epidemiology, 141, 187-197.
https://doi.org/10.1093/oxfordjournals.aje.a117420
[28]  Greenhalgh, T., Alwan, N., Bogaert, D., Burns, S.H., Cheng, K.K., Colbourn, T., Tannock, C., et al. (2020) COVID-19: An Open Letter to the UK’s Chief Medical Officers.
https://blogs.bmj.com/bmj/2020/09/21/covid-19-an-open-letter-to-the-uks-chief-medical-officers
[29]  Sanche, S., Lin, Y.T., Xu, C., Romero-Severson, E., Hengartner, N. and Ke, R. (2020) High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2. Emerging Infectious Diseases, 26, 1470-1477.
https://doi.org/10.3201/eid2607.200282
[30]  Liu, Y. and Rocklöv, J. (2022) The Effective Reproductive Number of the Omicron Variant of SARS-CoV-2 Is Several Times Relative to Delta. Journal of Travel Medicine, 29, taac037.
https://doi.org/10.1093/jtm/taac037
[31]  Biggerstaff, M., Cauchemez, S., Reed, C., Gambhir, M. and Finelli, L. (2014) Estimates of the Reproduction Number for Seasonal, Pandemic, and Zoonotic Influenza: A Systematic Review of the Literature. BMC Infectious Diseases, 14, Article No. 480.
https://doi.org/10.1186/1471-2334-14-480
[32]  Nguyen, P., Ajisegiri, W.S., Costantino, V., Chughtai, A.A. and MacIntyre, C.R. (2021) Reemergence of Human Monkeypox and Declining Population Immunity in the Context of Urbanization, Nigeria, 2017-2020. Emerging Infectious Diseases, 27, 1007-1014.
https://doi.org/10.3201/eid2704.203569
[33]  Fine, P.E.M., Jezek, Z., Grab, B. and Dixon, H. (1988) The Transmission Potential of Monkeypox Virus in Human Populations. International Journal of Epidemiology, 17, 643-650.
https://doi.org/10.1093/ije/17.3.643
[34]  Grant, R., Nguyen, L.L. and Breban, R. (2020) Modelling Human-to-Human Transmission of Monkeypox. Bulletin of the World Health Organization, 98, 638-640.
https://doi.org/10.2471/blt.19.242347
[35]  Althaus, C.L. (2014) Estimating the Reproduction Number of Ebola Virus (EBOV) during the 2014 Outbreak in West Africa. PLOS Currents, 6, 5 p.
https://doi.org/10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288
[36]  Heesterbeek, J.A.P. (2002) A Brief History of R₀ and a Recipe for Its Calculation. Acta Biotheoretica, 50, 189-204.
https://doi.org/10.1023/a:1016599411804
[37]  Adegoke, B.O., Odugbose, T. and Adeyemi, C. (2024) Data Analytics for Predicting Disease Outbreaks: A Review of Models and Tools. International Journal of Life Science Research Updates, 2, 1-9.
https://doi.org/10.53430/ijlsru.2024.2.2.0023
[38]  Alimohamadi, Y., Taghdir, M. and Sepandi, M. (2020) Estimate of the Basic Reproduction Number for COVID-19: A Systematic Review and Meta-Analysis. Journal of Preventive Medicine and Public Health, 53, 151-157.
https://doi.org/10.3961/jpmph.20.076
[39]  Breban, R., Vardavas, R. and Blower, S. (2007) Theory versus Data: How to Calculate R0? PLoS ONE, 2, e282.
https://doi.org/10.1371/journal.pone.0000282
[40]  Cori, A., Ferguson, N.M., Fraser, C. and Cauchemez, S. (2013) A New Framework and Software to Estimate Time-Varying Reproduction Numbers during Epidemics. American Journal of Epidemiology, 178, 1505-1512.
https://doi.org/10.1093/aje/kwt133
[41]  Grenfell, B.T., Pybus, O.G., Gog, J.R., Wood, J.L.N., Daly, J.M., Mumford, J.A., et al. (2004) Unifying the Epidemiological and Evolutionary Dynamics of Pathogens. Science, 303, 327-332.
https://doi.org/10.1126/science.1090727
[42]  Hall, V., Foulkes, S., Insalata, F., Kirwan, P., Saei, A., Atti, A., et al. (2022) Protection against SARS-CoV-2 after Covid-19 Vaccination and Previous Infection. New England Journal of Medicine, 386, 1207-1220.
https://doi.org/10.1056/nejmoa2118691
[43]  Grenfell, B.T. and Anderson, R.M. (1989) Pertussis in England and Wales: An Investigation of Transmission Dynamics and Control by Mass Vaccination. Proceedings of the Royal Society B: Biological Sciences, 236, 213-252.
[44]  Chemaitelly, H., Tang, P., Hasan, M.R., AlMukdad, S., Yassine, H.M., Benslimane, F.M., et al. (2021) Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar. New England Journal of Medicine, 385, e83.
https://doi.org/10.1056/nejmoa2114114
[45]  Burki, T.K. (2022) Omicron Variant and Booster COVID-19 Vaccines. The Lancet Respiratory Medicine, 10, e17.
https://doi.org/10.1016/s2213-2600(21)00559-2
[46]  Troiano, G. and Nardi, A. (2021) Vaccine Hesitancy in the Era of Covid-19. Public Health, 194, 245-251.
https://doi.org/10.1016/j.puhe.2021.02.025
[47]  Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., et al. (2008) Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases. PLOS Medicine, 5, e74.
https://doi.org/10.1371/journal.pmed.0050074
[48]  Robertson, D., Heriot, G. and Jamrozik, E. (2024) Herd Immunity to Endemic Diseases: Historical Concepts and Implications for Public Health Policy. Journal of Evaluation in Clinical Practice, 30, 625-631.
https://doi.org/10.1111/jep.13983
[49]  Rocklöv, J. and Sjödin, H. (2020) High Population Densities Catalyse the Spread of Covid-19. Journal of Travel Medicine, 27, taaa038.
https://doi.org/10.1093/jtm/taaa038
[50]  Colizza, V., Barrat, A., Barthélemy, M. and Vespignani, A. (2007) Predictability and Epidemic Pathways in Global Outbreaks of Infectious Diseases: The SARS Case Study. BMC Medicine, 5, Article No. 34.
https://doi.org/10.1186/1741-7015-5-34
[51]  Kraemer, M.U.G., Yang, C., Gutierrez, B., Wu, C., Klein, B., Pigott, D.M., et al. (2020) The Effect of Human Mobility and Control Measures on the COVID-19 Epidemic in China. Science, 368, 493-497.
https://doi.org/10.1126/science.abb4218
[52]  Lloyd-Smith, J.O., Schreiber, S.J., Kopp, P.E. and Getz, W.M. (2005) Superspreading and the Effect of Individual Variation on Disease Emergence. Nature, 438, 355-359.
https://doi.org/10.1038/nature04153
[53]  Danon, L., Ford, A.P., House, T., Jewell, C.P., Keeling, M.J., Roberts, G.O., et al. (2011) Networks and the Epidemiology of Infectious Disease. Interdisciplinary Perspectives on Infectious Diseases, 2011, Article ID: 284909.
https://doi.org/10.1155/2011/284909
[54]  Brauner, J.M., Mindermann, S., Sharma, M., Johnston, D., Salvatier, J., Gavenčiak, T., et al. (2021) Inferring the Effectiveness of Government Interventions against Covid-19. Science, 371, eabd9338.
https://doi.org/10.1126/science.abd9338
[55]  Pastor-Satorras, R., Castellano, C., Van Mieghem, P. and Vespignani, A. (2015) Epidemic Processes in Complex Networks. Reviews of Modern Physics, 87, 925-979.
https://doi.org/10.1103/revmodphys.87.925
[56]  Ball, F. and Neal, P. (2002) A General Model for Stochastic SIR Epidemics with Two Levels of Mixing. Mathematical Biosciences, 180, 73-102.
https://doi.org/10.1016/s0025-5564(02)00125-6
[57]  Keeling, M.J. and Rohani, P. (2008) Modeling Infectious Diseases in Humans and Animals. Princeton University Press.
[58]  Kiss, I.Z., Miller, J.C. and Simon, P.L. (2017) Mathematics of Epidemics on Networks: From Exact to Approximate Models. Springer.
https://doi.org/10.1007/978-3-319-50806-1_1
[59]  Bansal, S., Grenfell, B.T. and Meyers, L.A. (2007) When Individual Behaviour Matters: Homogeneous and Network Models in Epidemiology. Journal of The Royal Society Interface, 4, 879-891.
https://doi.org/10.1098/rsif.2007.1100
[60]  Wallinga, J. and Lipsitch, M. (2006) How Generation Intervals Shape the Relationship between Growth Rates and Reproductive Numbers. Proceedings of the Royal Society B: Biological Sciences, 274, 599-604.
https://doi.org/10.1098/rspb.2006.3754
[61]  Wallinga, J. (2004) Different Epidemic Curves for Severe Acute Respiratory Syndrome Reveal Similar Impacts of Control Measures. American Journal of Epidemiology, 160, 509-516.
https://doi.org/10.1093/aje/kwh255

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133