|
E-Commerce Letters 2025
基于文本挖掘的预制菜供应链优化研究
|
Abstract:
随着社会的全面推进,预制菜因其便捷性和营养美味成为都市快节奏生活人群的首选。本研究旨在通过文本挖掘技术,深入分析电商平台上消费者对预制菜的在线评论,以识别影响消费者满意度的关键因素,并优化预制菜的供应链管理。方法:(1) 本文通过文本挖掘技术,抓取了京东、淘宝、拼多多等电商平台上消费者对预制菜的在线评论;(2) 采用AP聚类的方法对预制菜评论特征词频挖掘,研究发现口味、便利性、售后服务、包装和性价比是影响消费者满意度的主要因素;(3) 使用情感分析模型对特征词频进行感情打分,并通过随机森林模型的分析得出预制菜消费影响因素。结果:(1) 口味满意度是最重要的影响因素占22.39%,突显了消费者对预制菜口味的高度重视。(2) 便利性和售后服务分别以18.53%和15.58%的占比位列其后,反映出消费者对服务效率和体验的期待。结论:研究为企业优化产品特性、提升消费者满意度和市场竞争力提供了策略建议,包括加速产品创新、加强服务质量、合理定价、保证食品新鲜度和优化包装设计等,以满足消费者需求并推动预制菜行业的高效运作和健康发展。
With the comprehensive advancement of society, prepared dishes have become the first choice of urban fast-paced life people because of their convenience and nutrition. This study aims to use text mining technology to deeply analyze consumers’ online reviews of prepared dishes on e-commerce platforms in order to identify key factors affecting consumer satisfaction and optimize supply chain management of prepared dishes. Methods: (1) Through text mining technology, this paper captured the online comments of consumers on prepared dishes on Jingdong, Taobao, Pinduoduo and other e-commerce platforms; (2) The AP clustering method was used to mine the characteristic word frequency of prepared food reviews, and the research found that taste, convenience, after-sales service, packaging and cost performance were the main factors affecting consumer satisfaction; (3) The emotion analysis model was used to score the characteristic word frequency, and the influencing factors of prepared vegetable consumption were obtained through the analysis of the random forest model. Results: (1) Taste satisfaction is the most important factor, accounting for 22.39%, which shows that consumers attach great importance to the taste of prepared dishes. (2) Convenience and after-sales service ranked second with 18.53% and 15.58% respectively, reflecting consumers’ expectations for service efficiency and experience. Conclusion: The study provides strategic suggestions for enterprises to optimize product characteristics, enhance consumer satisfaction and market competitiveness, including accelerating product innovation, strengthening service quality, reasonable pricing, ensuring food freshness and optimizing packaging design, so as to meet consumer demand and promote efficient operation and healthy development of prepared dishes industry.
[1] | 王静香, 张忠明, 李纪岳, 等. 我国预制菜产业发展特点与趋势预判[J]. 粮油食品科技, 2024, 32(1): 193-200. |
[2] | 包金龙, 袁勤俭. “新零售”背景下电商平台系统式线索对消费者购买意向的影响[J]. 中国流通经济, 2019, 33(12): 25-33. |
[3] | 刘宇涵, 刘永松. 网络舆论对消费者购买意愿的影响研究——基于舆论领袖与时间距离的调节作用[J]. 云南财经大学学报, 2017, 33(1): 150-160. |
[4] | 安俊文, 方梓蓥, 高希西, 等. 我国预制菜产业的发展现状、影响因素及发展趋势[J]. 食品与发酵工业, 2024, 50(5): 388-394. |
[5] | 徐浩洋, 童钰淼, 候梦, 等. 基于KANO模型与PCSI指数的预制菜消费心理需求与满意度研究[J]. 现代管理, 2023, 13(10): 1311-1320. |
[6] | Xu, Q. and Wang, L. (2023) Customized Consumption Intention and Influencing Factors of Pre-Made Dishes of Fotiaoqiang in Guangzhou. Advances in Economics and Management Research, 7, 508-518. https://doi.org/10.56028/aemr.7.1.508.2023 |
[7] | 张倩琳. 基于SOR-SEM模型的预制菜消费趋势与影响机理分析[J/OL]. 经营与管理, 1-12. https://doi.org/10.16517/j.cnki.cn12-1034/f.20230712.005, 2025-04-02. |
[8] | 黄梓熙, 贺嫦珍. 预制菜消费者购买意愿的影响因素分析——以广东省为例[J]. 食品安全导刊, 2023(28): 189-192. |
[9] | Luo, F., Shang, W. and Gan, J. (2023) A Study on the Adoption Intention of Cold Chain Prepared Dishes Based on Consumer Orientation Mentality. SPEKTA (Jurnal Pengabdian Kepada Masyarakat: Teknologi dan Aplikasi), 4, 117-146. https://doi.org/10.12928/spekta.v4i1.7932 |
[10] | 刘玉林, 菅利荣. 基于文本情感分析的电商在线评论数据挖掘[J]. 统计与信息论坛, 2018, 33(12): 119-124. |
[11] | 孙瑾,陈静. 普通消费者口碑和专家评论对消费者购买决策的影响研究[J]. 商业经济与管理, 2020(1): 15-26. |
[12] | 王可山. 网购食品消费者选择行为的影响因素[J]. 中国流通经济, 2020, 34(1): 74-82. |
[13] | 张小艳, 白瑜. 基于加权融合字词向量的中文在线评论情感分析[J]. 计算机应用研究, 2022, 39(1): 31-36. |
[14] | Breiman, L., Friedman, J., Olshen, R., et al. (1984) Classification and Regression Trees. Chapman & Hall. |
[15] | 曹正凤. 随机森林算法优化研究[D]: [硕士学位论文]. 北京: 首都经济贸易大学, 2014. |