|
E-Commerce Letters 2025
数据赋能视角下交易市场主体策略研究
|
Abstract:
把握数据交易市场发展规律,优化数据赋能实施环境是数据交易市场激活和创新发展的重点与难点问题。在深入剖析数据交易关键决策环节基础上,采用博弈分析与数值模拟方法,构建了一个由数据供给方、数据需求方以及数据交易平台企业这三个参与方构成的数据交易演化博弈模型,求解、论证和数值模拟了三个参与方相互博弈的稳定策略、策略演变条件、稳定点稳定性及其关键参数带来的影响。研究表明:平台适度降低数据赋能水平和数据赋能收费、提高数据需求方交易时支付的数据交易抽成,均有利于平台企业实施数据赋能策略;数据供给方应降低高低质量数据的质量差距,有利于提高数据供给方高质量数据供给概率;平台方降低数据赋能水平和数据赋能收费并提高数据需求方支付的数据交易抽成,数据供给方降低高质量数据和低质量数据之间的数据质量差距,政府加强对平台经济的监管和引导有利于推动良好数据交易生态的形成。本研究可为平台企业、数据供给方和数据交易方法的数据交易提供决策参考,还可为数据交易生态治理与政策制定提供决策支持。
A comprehensive understanding of the evolution of the data trading market and the optimization of the implementation environment for data empowerment represent pivotal yet formidable challenges in the activation and innovative development of the data trading market. A meticulous examination of the pivotal decision-making processes in data trading has led to the formulation of a game analysis and numerical simulation method. This method was employed to construct a data trading evolutionary game model comprising three participants: data suppliers, data demanders, and data trading platform enterprises. The model’s primary contributions include the resolution, illustration, and numerical simulation of the stable strategies of the three participants in the game. It also elucidates the conditions for strategy evolution, the stability of the stable points, and the impact of their key parameters. The research findings indicate that: The implementation of a data empowerment strategy by platform enterprises is conducive to the existence of a platform that moderately reduces the level of data empowerment and the fee for data empowerment, and increases the data transaction commission paid by the data demand side during transactions. It is recommended that data suppliers mitigate the disparity in quality between high- and low-quality data, thereby enhancing the likelihood of receiving high-quality data. The platform, in turn, should moderate the level of data empowerment and the fee for data empowerment, while concurrently increasing the data transaction commission paid by the data demand side. Concurrently, data suppliers should endeavor to narrow the quality gap between high- and low-quality data. The government’s enhancement of oversight and guidance of the platform economy is conducive to the promotion of the formation of a sound data trading ecology. This study offers a valuable reference point for platform enterprises, data suppliers, and data trading methods. Additionally, it provides a foundation for decision-making.
[1] | Xiao, D., Kuang, X. and Chen, K. (2020) E-Commerce Supply Chain Decisions under Platform Digital Empowerment-Induced Demand. Computers & Industrial Engineering, 150, Article ID: 106876. https://doi.org/10.1016/j.cie.2020.106876 |
[2] | Grewal, D., Roggeveen, A.L. and Nordfält, J. (2017) The Future of Retailing. Journal of Retailing, 93, 1-6. https://doi.org/10.1016/j.jretai.2016.12.008 |
[3] | van Praag, C.M. (1999) Some Classic Views on Entrepreneurship. De Economist, 147, 311-335. https://doi.org/10.1023/a:1003749128457 |
[4] | 王伟玲. 中国数据要素市场体系总体框架和发展路径研究[J]. 电子政务, 2023(7): 2-11. |
[5] | Huang, L., Dou, Y., Liu, Y., Wang, J., Chen, G., Zhang, X., et al. (2021) Toward a Research Framework to Conceptualize Data as a Factor of Production: The Data Marketplace Perspective. Fundamental Research, 1, 586-594. https://doi.org/10.1016/j.fmre.2021.08.006 |
[6] | Liang, F., Yu, W., An, D., Yang, Q., Fu, X. and Zhao, W. (2018) A Survey on Big Data Market: Pricing, Trading and Protection. IEEE Access, 6, 15132-15154. https://doi.org/10.1109/access.2018.2806881 |
[7] | 吕指臣, 卢延纯, 张晓明. 公共数据的定价机制和成本构成研究[J/OL]. 价格月刊, 1-11. https://link.cnki.net/urlid/36.1006.F.20250124.0851.002, 2025-01-10. |
[8] | Nason, S.D. (2010) Free: The Future of a Radical Price. Journal of Revenue and Pricing Management, 9, 479-480. https://doi.org/10.1057/rpm.2010.24 |
[9] | Attard, J., Orlandi, F. and Auer, S. (2017) Exploiting the Value of Data through Data Value Networks. Proceedings of the 10th International Conference on Theory and Practice of Electronic Governance, New Delhi, 7-9 March 2017, 475-484. https://doi.org/10.1145/3047273.3047299 |
[10] | Fernandez, R.C., Subramaniam, P. and Franklin, M.J. (2020) Data Market Platforms: Trading Data Assets to Solve Data Problems. Proceedings of the VLDB Endowment, 13, 1933-1947. https://doi.org/10.14778/3407790.3407800 |
[11] | Reviglio, U. (2022) The Untamed and Discreet Role of Data Brokers in Surveillance Capitalism: A Transnational and Interdisciplinary Overview. Internet Policy Review, 11, No. 3. https://doi.org/10.14763/2022.3.1670 |
[12] | Feng, Z., Yu, S. and Zhu, Y. (2023) Towards Personalized Privacy Preference Aware Data Trading: A Contract Theory Based Approach. Computer Networks, 224, Article ID: 109637. https://doi.org/10.1016/j.comnet.2023.109637 |
[13] | Jiang, Y., Zhao, X. and Zhai, L. (2023) Digital Empowerment to Improve the Operational Profitability in E-Commerce Supply Chain. Electronic Commerce Research and Applications, 58, Article ID: 101253. https://doi.org/10.1016/j.elerap.2023.101253 |
[14] | Sun, Q., Wang, C., Zuo, L. and Lu, F. (2018) Digital Empowerment in a WEEE Collection Business Ecosystem: A Comparative Study of Two Typical Cases in China. Journal of Cleaner Production, 184, 414-422. https://doi.org/10.1016/j.jclepro.2018.02.114 |
[15] | Parida, V., Sjödin, D. and Reim, W. (2019) Reviewing Literature on Digitalization, Business Model Innovation, and Sustainable Industry: Past Achievements and Future Promises. Sustainability, 11, Article 391. https://doi.org/10.3390/su11020391 |
[16] | Li, L., Su, F., Zhang, W. and Mao, J. (2017) Digital Transformation by SME Entrepreneurs: A Capability Perspective. Information Systems Journal, 28, 1129-1157. https://doi.org/10.1111/isj.12153 |
[17] | 宿昊. 电商平台数字赋能下制造商渠道选择博弈研究[J]. 全国流通经济, 2024(1): 92-96. |
[18] | Shen, Y., Willems, S.P. and Dai, Y. (2019) Channel Selection and Contracting in the Presence of a Retail Platform. Production and Operations Management, 28, 1173-1185. https://doi.org/10.1111/poms.12977 |
[19] | 孙新波, 张明超, 王永霞. 工业互联网平台赋能促进数据化商业生态系统构建机理案例研究[J].管理评论, 2022, 34(1): 322-337. |
[20] | 肖迪, 陈瑛, 王佳燕, 等. 考虑平台数据赋能的电商供应链成本分担策略选择研究[J]. 中国管理科学, 2021, 29(10): 58-69. |
[21] | 邢青松, 陈佑琳, 邓富民. 考虑数据共享和平台赋能的智能制造生态合作策略演化[J]. 软科学, 2024, 38(7): 135-144. |
[22] | Zhang, Y. and Hu, M. (2021) Research on the Relationship between Data Empowerment and Service Innovation Capability of Logistics Platform Enterprise. Mathematical Problems in Engineering, 2021, Article ID: 9974585. https://doi.org/10.1155/2021/9974585 |
[23] | 胡强, 谢家平, 张广思. 电商平台与竞争性商家数据赋能策略研究[J/OL]. 中国管理科学, 1-14. http://www.zgglkx.com/CN/10.16381/j.cnki.issn1003-207x.2021.1414, 2025-01-10. |