全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于LSTM-Transformer模型的豆油期货价格预测分析
Prediction and Analysis of Soybean Oil Futures Prices Based on the LSTM-Transformer Model

DOI: 10.12677/aam.2025.144152, PP. 192-199

Keywords: 豆油期货,LSTM-Transformer模型,价格预测
Soybean Oil Futures
, LSTM-Transformer Model, Price Forecasts

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文运用长短期记忆网络(LSTM)和变换器(Transformer )混合模型预测豆油期货价格。通过数据处理、模型构建、训练评估与结果分析,发现该模型能有效地捕捉价格序列特征,在测试集上展现出良好预测性能,在平均绝对误差(MAE),均方根误差(RMSE),平均绝对百分比误差(MAPE),相对均方根误差(RRMSE)等指标上表现优异,与单独的Transformer模型和LSTM模型预测相比,精确度有明显的提高。这表示该模型在期货价格预测领域具有一定的应用潜力。
This paper uses a hybrid model of Long Short-Term Memory (LSTM) and Transformer to predict the futures price of soybean oil. Through data processing, model construction, training evaluation, and result analysis, it is found that this model can effectively capture the characteristics of the price sequence. It demonstrates excellent prediction performance on the test set and shows outstanding performance in indicators such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Relative Root Mean Square Error (RRMSE). Compared with the predictions of the individual LSTM model and Transformer model, the accuracy has been significantly improved. This indicates that this model has certain application potential in the field of futures price prediction.

References

[1]  赵昱坡, 黄伟, 张剑飞. 基于混合尺度健康因子的LSTM-Transformer锂电池寿命预测[J]. 电子测量技术, 2024, 47(11): 112-122.
[2]  Shi, J., Wang, S., Qu, P. and Shao, J. (2024) Time Series Prediction Model Using LSTM-Transformer Neural Network for Mine Water Inflow. Scientific Reports, 14, 182-184.
https://doi.org/10.1038/s41598-024-69418-z
[3]  张思楠, 李树彬, 曹永军. 基于LSTM-Transformer的城市轨道交通短时客流预测[J]. 物流科技, 2024, 47(14): 103-106, 114.
[4]  张舜. 基于LSTM-Transformer的船闸通航流量预测研究[J]. 西部交通科技, 2024(9): 204-206.
[5]  彭文祥, 张德英. 基于LSTM与Transformer的地面沉降智能预测方法研究——以上海市为例[J]. 时空信息学报, 2024, 31(1): 94-103.
[6]  Feng, Z., Zhang, J., Jiang, H., Yao, X., Qian, Y. and Zhang, H. (2024) Energy Consumption Prediction Strategy for Electric Vehicle Based on LSTM-Transformer Framework. Energy, 302, Article ID: 131780.
https://doi.org/10.1016/j.energy.2024.131780
[7]  冀乃庚, 周昕博. 基于LSTM、Transformer和LightGBM的机构备付金预测方法[J]. 计算机科学与应用, 2024(2): 249-259.
[8]  辛洲扬. 基于LSTM与Transformer模型的股价预测[D]: [硕士学位论文]. 济南: 山东大学, 2022.
[9]  王钧, 张鹏, 袁帅. 基于股票预测的Seq2Seq RNN和LSTM模型比较[J]. 时代金融, 2018(35): 381-382.
[10]  刘洋, 黎玉寒, 窦宝明. 基于LSTM的棉花期货价格预测方法[J]. 软件, 2024, 45(7): 8-12, 86.
[11]  范俊明, 刘洪久, 胡彦蓉. 基于LSTM深度学习的大豆期货价格预测[J]. 价格月刊, 2021(2): 7-15.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133