|
带利率的经典风险模型的最优分红问题
|
Abstract:
本文应用策略迭代算法研究带利率的经典风险模型的最优分红问题。为了克服索赔额服从一般分布的最优分红问题求解的困难,引入了与原问题对应的一列辅助优化问题,通过完整求解辅助优化问题,来给出原最优分红问题的最优策略与值函数的新刻画。同时,借助最小非负解理论,给出了求解最优策略和值函数的策略迭代算法。最后,给出了数值例子。
The paper applies the policy iteration algorithm to study the optimal dividend problem in the classic risk model under force of interest. To overcome the difficulties in solving the optimal dividend problem when the claim amount follows a general distribution, a sequence of auxiliary optimization problems corresponding to the original problem is introduced. By solving the auxiliary optimization problems completely, a new characterization of the optimal strategy and the value function for the original optimal dividend problem is provided. Additionally, using the theory of minimal non-negative solutions, a policy iteration algorithm for solving the optimal strategy and value function is proposed. Finally, numerical examples are presented.
[1] | De Finetti, B. (1957) Su un’Impostazione Alternativa Della Teoria Collettiva del Rischio. Transactions of the 15th International Congress of Actuaries, 2, 433. |
[2] | Gerber, H.U. (1969) Entscheidungskriterien Für Den Zusammengesetzten Poisson-Prozess. Doctoral Thesis, ETH zürich. |
[3] | Azcue, P. and Muler, N. (2005) Optimal Reinsurance and Dividend Distribution Policies in the Cramér‐Lundberg Model. Mathematical Finance, 15, 261-308. https://doi.org/10.1111/j.0960-1627.2005.00220.x |
[4] | Kulenko, N. and Schmidli, H. (2008) Optimal Dividend Strategies in a Cramér-Lundberg Model with Capital Injections. Insurance: Mathematics and Economics, 43, 270-278. https://doi.org/10.1016/j.insmatheco.2008.05.013 |
[5] | Albrecher, H. and Thonhauser, S. (2009) Optimality Results for Dividend Problems in Insurance. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 103, 295-320. https://doi.org/10.1007/bf03191909 |
[6] | Schmidli, H. (2008) Stochastic Control in Insurance. Springer. |
[7] | Paulsen, J. (1993) Risk Theory in a Stochastic Economic Environment. Stochastic Processes and Their Applications, 46, 327-361. https://doi.org/10.1016/0304-4149(93)90010-2 |
[8] | Wu, R., Wang, G. and Zhang, C. (2005) On a Joint Distribution for the Risk Process with Constant Interest Force. Insurance: Mathematics and Economics, 36, 365-374. https://doi.org/10.1016/j.insmatheco.2005.03.001 |
[9] | Yuen, K.C., Wang, G. and Li, W.K. (2007) The Gerber-Shiu Expected Discounted Penalty Function for Risk Processes with Interest and a Constant Dividend Barrier. Insurance: Mathematics and Economics, 40, 104-112. https://doi.org/10.1016/j.insmatheco.2006.03.002 |
[10] | Albrecher, H. and Thonhauser, S. (2008) Optimal Dividend Strategies for a Risk Process under Force of Interest. Insurance: Mathematics and Economics, 43, 134-149. https://doi.org/10.1016/j.insmatheco.2008.03.012 |
[11] | Gao, S. and Liu, Z. (2010) The Perturbed Compound Poisson Risk Model with Constant Interest and a Threshold Dividend Strategy. Journal of Computational and Applied Mathematics, 233, 2181-2188. https://doi.org/10.1016/j.cam.2009.10.004 |
[12] | Fang, Y. and Qu, Z. (2013) Optimal Dividend and Capital Injection Strategies for a Risk Model under Force of Interest. Mathematical Problems in Engineering, 2013, Article ID: 750547. https://doi.org/10.1155/2013/750547 |
[13] | Thonhauser, S. and Albrecher, H. (2011) Optimal Dividend Strategies for a Compound Poisson Process under Transaction Costs and Power Utility. Stochastic Models, 27, 120-140. https://doi.org/10.1080/15326349.2011.542734 |
[14] | Albrecher, H., Azcue, P. and Muler, N. (2017) Optimal Dividend Strategies for Two Collaborating Insurance Companies. Advances in Applied Probability, 49, 515-548. https://doi.org/10.1017/apr.2017.11 |
[15] | Liu, Y., Liu, Z. and Liu, G. (2020) Optimal Dividend Problems for Sparre Andersen Risk Model with Bounded Dividend Rates. Scandinavian Actuarial Journal, 2020, 128-151. https://doi.org/10.1080/03461238.2019.1655475 |
[16] | Liu, G., Liu, X. and Liu, Z. (2022) The Policy Iteration Algorithm for a Compound Poisson Process Applied to Optimal Dividend Strategies under a Cramér-Lundberg Risk Model. Journal of Computational and Applied Mathematics, 413, Article 114368. https://doi.org/10.1016/j.cam.2022.114368 |