|
小阴极环间距硅漂移探测器的设计和模拟
|
Abstract:
硅漂移探测器(silicon drift detector, SDD)被广泛地用于X射线探测。本研究设计了小阴极环间距的SDD结构,使用Silvaco TCAD仿真软件分别对阴极环间距为10 μm和30 μm SDD进行了建模与仿真,对10 μm和30 μm阴极环间距SDD的电学特性进行了比较,对10 μm阴极环间距SDD的电容、瞬态阳极电流和电荷收集机制进行了分析。结果表明,相对于30 μm阴极环间距SDD,10 μm阴极环间距SDD有小的漏电流,平滑的电子漂移沟道,更大的横向漂移电场,均匀的电势分布,较低的电容,电荷收集时间约为100 ns。
Silicon drift detector (SDD) is widely used for X-ray detection. This study designed an SDD structure with small cathode ring spacing, and modeled and simulated SDDs with cathode ring spacing of 10 μm and 30 μm using Silvaco TCAD simulation software. The electrical characteristics of SDDs with cathode ring spacing of 10 μm and 30 μm were compared, and the capacitance, transient anode current, and charge collection mechanism of SDDs with cathode ring spacing of 10 μm were analyzed. The results indicate that compared to the 30 μm cathode ring spacing SDD, the 10 μm cathode ring spacing SDD has smaller leakage current, smoother electron drift channel, larger lateral drift electric field, uniform potential distribution, lower capacitance, and charge collection time of about 100 ns.
[1] | Gatti, E. and Rehak, P. (2005) Review of Semiconductor Drift Detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 541, 47-60. https://doi.org/10.1016/j.nima.2005.01.037 |
[2] | Gatti, E. and Rehak, P. (1984) Semiconductor Drift Chamber—An Application of a Novel Charge Transport Scheme. Nuclear Instruments and Methods in Physics Research, 225, 608-614. https://doi.org/10.1016/0167-5087(84)90113-3 |
[3] | Bertuccio, G., Ahangarianabhari, M., Graziani, C., Macera, D., Shi, Y., Rachevski, A., et al. (2015) A Silicon Drift Detector-CMOS Front-End System for High Resolution X-Ray Spectroscopy up to Room Temperature. Journal of Instrumentation, 10, P01002. https://doi.org/10.1088/1748-0221/10/01/p01002 |
[4] | Hafizh, I., Carminati, M. and Fiorini, C. (2020) TERA: Throughput-Enhanced Readout ASIC for High-Rate Energy-Dispersive X-Ray Detection. IEEE Transactions on Nuclear Science, 67, 1746-1759. https://doi.org/10.1109/tns.2020.3001459 |
[5] | Fernando, P.U.A.I., Kennedy, A.J., Pokrzywinski, K., Jernberg, J., Thornell, T., George, G., et al. (2024) Development of Alginate Beads for Precise Environmental Release Applications: A Design of Experiment Based Approach and Analysis. Journal of Environmental Management, 351, Article 119872. https://doi.org/10.1016/j.jenvman.2023.119872 |
[6] | Zhu, Q., Sun, G., Wang, P., Sui, X., Liu, C., Wang, J., et al. (2024) Imaging the Space-Resolved Chemical Heterogeneity of Degraded Graphite Anode through Scanning Transmission X-Ray Microscope. Journal of Power Sources, 591, Article 233882. https://doi.org/10.1016/j.jpowsour.2023.233882 |
[7] | Gholami Hatam, E., Pelicon, P., Punzón-Quijorna, E., Kelemen, M. and Vavpetič, P. (2023) Three-Dimensional Element-by-Element Surface Topography Reconstruction of Compound Samples Using Multisegment Silicon Drift Detectors. Microscopy and Microanalysis, 29, 1980-1991. https://doi.org/10.1093/micmic/ozad119 |
[8] | van der Ent, A., Brueckner, D., Spiers, K.M., Falch, K.V., Falkenberg, G., Layet, C., et al. (2023) High-Energy Interference-Free K-Lines Synchrotron X-Ray Fluorescence Microscopy of Rare Earth Elements in Hyperaccumulator Plants. Metallomics, 15, mfad050. https://doi.org/10.1093/mtomcs/mfad050 |
[9] | Newbury, D.E. and Ritchie, N.W.M. (2015) Quantitative Electron-Excited X-Ray Microanalysis of Borides, Carbides, Nitrides, Oxides, and Fluorides with Scanning Electron Microscopy/Silicon Drift Detector Energy-Dispersive Spectrometry (SEM/SDD-EDS) and NIST DTSA-II. Microscopy and Microanalysis, 21, 1327-1340. https://doi.org/10.1017/s1431927615014993 |
[10] | Wu, B., Xia, J., Zhang, S., et al. (2023) Elemental Composition X-Ray Fluorescence Analysis with a TES-Based High-Resolution X-Ray Spectrometer. Chinese Physics B, 32, Article 097801. https://doi.org/10.1088/1674-1056/acd926 |
[11] | Manzanillas, L., Ablett, J.M., Choukroun, M., et al. (2024) Development of an X-Ray Polarimeter at the SOLEIL Synchrotron. Review of Scientific Instruments, 95, Article 053302. https://doi.org/10.1063/5.0207370 |
[12] | Zhao, K., Xue, M., Zhang, Y., Peng, H., Wen, S., Zhang, Z., et al. (2023) Measuring the Thermal Neutron Fluence of NTD-Ge Using the Self-Monitoring Method. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1054, Article 168425. https://doi.org/10.1016/j.nima.2023.168425 |
[13] | Bulut, S., Türemen, G., Yeltepe, E., Porsuk, D., Serin, N.Ö. and Kaya, Ü. (2024) An Irradiation System for Nuclear and Materials Research in a Medical Cyclotron. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1058, Article 168927. https://doi.org/10.1016/j.nima.2023.168927 |
[14] | Metzger, W., Engdahl, J., Rossner, W., Boslau, O. and Kemmer, J. (2004) Large-Area Silicon Drift Detectors for New Applications in Nuclear Medicine Imaging. IEEE Transactions on Nuclear Science, 51, 1631-1635. https://doi.org/10.1109/tns.2004.832666 |
[15] | Salge, T., Tagle, R., Hecht, L., Ferriere, L., Ball, A.D., Kearsley, A.T., et al. (2014) Advanced EDS and ΜXRF Analysis of Earth and Planetary Materials Using Spectrum Imaging, Computer-Controlled SEM and an Annular SDD. Microscopy and Microanalysis, 20, 1716-1717. https://doi.org/10.1017/s1431927614010319 |
[16] | Liu, S., Xue, Y., Jia, R., Tao, K., Jiang, S., Wu, Y., et al. (2019) Design and Preparation of Integrated Voltage Divider for Silicon Drift Detector by Ion Implantation. Journal of Materials Science: Materials in Electronics, 30, 10152-10161. https://doi.org/10.1007/s10854-019-01351-8 |
[17] | Rehak, P., Gatti, E., Longoni, A., Sampietro, M., Holl, P., Lutz, G., et al. (1989) Spiral Silicon Drift Detectors. IEEE Transactions on Nuclear Science, 36, 203-209. https://doi.org/10.1109/23.34435 |
[18] | Li, Y., Xiong, B. and Li, Z. (2016) 3D Design and Electric Simulation of a Silicon Drift Detector Using a Spiral Biasing Adapter. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 831, 29-33. https://doi.org/10.1016/j.nima.2016.05.040 |
[19] | Rehak, P., Carini, G., Chen, W., De Geronimo, G., Fried, J., Li, Z., et al. (2010) Arrays of Silicon Drift Detectors for an Extraterrestrial X-Ray Spectrometer. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 624, 260-264. https://doi.org/10.1016/j.nima.2010.05.058 |
[20] | Bruner, N.L., Frautschi, M.A., Hoeferkamp, M.R. and Seidel, S.C. (1995) Characterization Procedures for Double-Sided Silicon Microstrip Detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 362, 315-337. https://doi.org/10.1016/0168-9002(95)00280-4 |
[21] | Sun, J., Li, Z., Li, X., Li, X., Cai, X., Tan, Z., et al. (2022) Novel Spiral Silicon Drift Detector with Equal Cathode Ring Gap and Given Surface Electric Fields. Micromachines, 13, Article 1682. https://doi.org/10.3390/mi13101682 |
[22] | Fiorini, C., Longoni, A. and Lechner, P. (2000) Single-Side Biasing of Silicon Drift Detectors with Homogeneous Light-Entrance Window. IEEE Transactions on Nuclear Science, 47, 1691-1695. https://doi.org/10.1109/23.870862 |