全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进U-Net网络抑制散斑噪声算法
Speckle Noise Suppression Algorithm Based on Improved U-Net Network

DOI: 10.12677/csa.2025.154072, PP. 1-8

Keywords: U-Net,散斑抑制,相位重建,Inception,注意力模块
U-Net
, Speckle Suppression, Phase Reconstruction, Inception, Attention Module

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出了一种改进U-Net散斑抑制方法,该方法结合了Inception、残差结构和注意力模块,应用于具有不同噪声级别的包裹相位图像。将所提出的方法与传统的降噪方法以及现有的深度学习降噪方法进行了对比,仿真与实验结果表明,所提出的方法在不同噪声级别下具有更好的散斑抑制效果。此外,我们对降噪后的包裹相位进行了相位重建,对比了不同方法降噪后的相位精度,结果表明,该方法在实际应用中能够有效抑制散斑噪声,取得了较好的效果。
This paper proposes an improved U-Net speckle suppression method that integrates Inception and residual structures with attention modules, applied to wrapped phase images with different noise levels. The proposed method is compared with traditional denoising methods as well as existing deep learning-based denoising techniques. Experimental results show that our method achieves better speckle suppression across various noise levels. Furthermore, we performed phase reconstruction on the denoised wrapped phase images and compared the phase accuracy of different denoising methods. The results show that the proposed method can effectively suppress speckle noise in practical applications and achieve satisfactory performance.

References

[1]  Shin, S. and Yu, Y. (2019) Lensless Reflection Digital Holographic Microscope with a Fresnel-Bluestein Transform. Journal of the Korean Physical Society, 74, 98-101.
https://doi.org/10.3938/jkps.74.98
[2]  Kim, K. and Jeong, Y. (2018) One-Step Fabrication of Hierarchical Multiscale Surface Relief Gratings by Holographic Lithography of Azobenzene Polymer. Optics Express, 26, 5711-5723.
https://doi.org/10.1364/oe.26.005711
[3]  Dong, J., Jia, S. and Yu, H. (2019) Hybrid Method for Speckle Noise Reduction in Digital Holography. Journal of the Optical Society of America A, 36, D14.
https://doi.org/10.1364/josaa.36.000d14
[4]  周文静, 邹帅, 何登科, 等. 频谱卷积神经网络实现全息图散斑降噪[J]. 光学学报, 2020, 40(5): 67-74.
[5]  Garcia-Sucerquia, J., Ramírez, J.A.H. and Prieto, D.V. (2005) Reduction of Speckle Noise in Digital Holography by Using Digital Image Processing. Optik, 116, 44-48.
https://doi.org/10.1016/j.ijleo.2004.12.004
[6]  吴小虹, 万力超, 周小安. 基于TV-维纳滤波的散斑噪声抑制[J]. 智能计算机与应用, 2017, 7(4): 6-8, 12.
[7]  Dabov, K., Foi, A., Katkovnik, V. and Egiazarian, K. (2007) Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Transactions on Image Processing, 16, 2080-2095.
https://doi.org/10.1109/tip.2007.901238
[8]  牛瑞, 田爱玲, 王大森, 刘丙才, 王红军, 钱晓彤, 刘卫国. 数字全息测量系统的散斑噪声抑制[J]. 激光与光电子学进展, 2022, 59(16): 86-92.
[9]  Hao, F., Tang, C., Xu, M. and Lei, Z. (2019) Batch Denoising of ESPI Fringe Patterns Based on Convolutional Neural Network. Applied Optics, 58, 3338-3346.
https://doi.org/10.1364/ao.58.003338
[10]  Yan, K., Chang, L., Andrianakis, M., Tornari, V. and Yu, Y. (2020) Deep Learning-Based Wrapped Phase Denoising Method for Application in Digital Holographic Speckle Pattern Interferometry. Applied Sciences, 10, Article 4044.
https://doi.org/10.3390/app10114044
[11]  Li, J., Tang, C., Xu, M., Fan, Z. and Lei, Z. (2021) DBDnet for Denoising in ESPI Wrapped Phase Patterns with High Density and High Speckle Noise. Applied Optics, 60, 10070-10079.
https://doi.org/10.1364/ao.442293
[12]  Gurrola-Ramos, J., Dalmau, O. and Alarcón, T. (2022) U-Net Based Neural Network for Fringe Pattern Denoising. Optics and Lasers in Engineering, 149, Article 106829.
https://doi.org/10.1016/j.optlaseng.2021.106829

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133