全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类复对称线性系统的不平衡CRI迭代方法
Lopsided CRI Iteration Method for a Class of Complex Symmetric Linear Systems

DOI: 10.12677/aam.2025.143123, PP. 357-363

Keywords: 复对称矩阵,CRI迭代方法,不平衡分裂迭代,收敛性分析,拟最优参数
Complex Symmetric Matrix
, CRI Iteration Method, Lopsided Splitting Iteration, Convergence Analysis, Quasi-Optimal Parameter

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于实部与虚部组合(CRI)迭代方法,提出了一种不平衡CRI (LCRI)迭代方法,用于求解复对称半正定线性系统。理论上利用谱理论分析了LCRI方法的收敛性,并给出了拟最优参数的表达式,数值上进一步验证了新方法的高效性。
Based on the combination of real and imaginary parts (CRI) iteration method, a lopsided CRI (LCRI) iteration method is proposed for solving complex symmetric positive semi-definite linear systems. By using the spectral theory, we not only analyze the convergence property of the LCRI method, but also obtain the quasi-optimal parameter expression. The efficiency of the new method is further verified numerically.

References

[1]  Bertaccini, D. (2004) Efficient Preconditioning for Sequences of Parametric Complex Symmetric Linear Systems. Electronic Transactions on Numerical Analysis, 18, 49-64.
[2]  Arridge, S.R. (1999) Optical Tomography in Medical Imaging. Inverse Problems, 15, R41-R93.
https://doi.org/10.1088/0266-5611/15/2/022
[3]  Feriani, A., Perotti, F. and Simoncini, V. (2000) Iterative System Solvers for the Frequency Analysis of Linear Mechanical Systems. Computer Methods in Applied Mechanics and Engineering, 190, 1719-1739.
https://doi.org/10.1016/s0045-7825(00)00187-0
[4]  Van Dijk, W. and Toyama, F.M. (2007) Accurate Numerical Solutions of the Time-Dependent Schrödinger Equation. Physical Review E, 75, Article ID: 036707.
https://doi.org/10.1103/physreve.75.036707
[5]  Bai, Z., Golub, G.H. and Ng, M.K. (2003) Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems. SIAM Journal on Matrix Analysis and Applications, 24, 603-626.
https://doi.org/10.1137/s0895479801395458
[6]  Bai, Z., Benzi, M. and Chen, F. (2010) Modified HSS Iteration Methods for a Class of Complex Symmetric Linear Systems. Computing, 87, 93-111.
https://doi.org/10.1007/s00607-010-0077-0
[7]  Bai, Z., Benzi, M. and Chen, F. (2011) On Preconditioned MHSS Iteration Methods for Complex Symmetric Linear Systems. Numerical Algorithms, 56, 297-317.
https://doi.org/10.1007/s11075-010-9441-6
[8]  Li, X., Yang, A. and Wu, Y. (2013) Lopsided PMHSS Iteration Method for a Class of Complex Symmetric Linear Systems. Numerical Algorithms, 66, 555-568.
https://doi.org/10.1007/s11075-013-9748-1
[9]  Wang, T., Zheng, Q. and Lu, L. (2017) A New Iteration Method for a Class of Complex Symmetric Linear Systems. Journal of Computational and Applied Mathematics, 325, 188-197.
https://doi.org/10.1016/j.cam.2017.05.002
[10]  Saad, Y. (2003) Iterative Methods for Sparse Linear Systems. 2nd Edition, SIAM.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133