全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

耦合磁场的两相流模型的低马赫数极限
Low Mach Number Limit of a Two-Phase Model with Magnetic Field

DOI: 10.12677/aam.2025.143120, PP. 331-339

Keywords: 可压缩两相流模型,不可压缩磁流体方程,低马赫数极限,相对熵
Compressible Two-Fluid Model
, Incompressible MHD Equations, Low Mach Number Limit, Relative Entropy

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了耦合磁场的两相流模型的低马赫数极限问题。在适当的初值条件下,证明了当马赫数趋近于零时,可压缩两相流模型的解收敛于不可压缩磁流体方程的强解。
In this paper, we study the low Mach number limit of a two-phase model with magnetic field. In the case of well-prepared initial data, we prove that the solution of the compressible two-fluid system converges to the strong solution of the incompressible magnetohydrodynamic equations as the Mach number 0 .

References

[1]  Lions, P.L. and Masmoudi, N. (1998) Incompressible Limit for a Viscous Compressible Fluid. Journal de Mathématiques Pures et Appliquées, 77, 585-627.
http://doi.org/10.1016/S0021-7824(98)80139-6
[2]  Wang, H. and Yang, J. (2021) Incompressible Limit of a Fluid-Particle Interaction Model. Applications of Mathematics, 66, 69-86.
https://doi.org/10.21136/AM.2020.0253-19
[3]  Li, Y. (2012) Convergence of the Compressible Magnetohydrodynamic Equations to Incompressible Magnetohydrodynamic Equations. Journal of Different Equations, 252, 2725-2738.
https://doi.org/10.1016/j.jde.2011.10.002
[4]  Hu, X. and Wang, D. (2009) Low Mach Number Limit of Viscous Compressible Magnetohydrodynamic Flows. SIAM Journal on Mathematical Analysis, 41, 1272-1294.
http://doi.org/10.1137/080723983
[5]  Jiang, S., Ju, Q. and Li, F. (2012) Asymptotic Limits of the Compressible Magnetohydrodynamic Equations. Series in Contemporary Applied Mathematics, Hyperbolic Problems, 17, 439-446.
https://doi.org/10.1142/9789814417099_0042
[6]  Wen, H. and Zhu, L. (2017) Global Well-Posedness and Decay Estimates of Strong Solutions to a Two-Phase Model with Magnetic Field. Journal of Different Equations, 264, 2377-2406.
https://doi.org/10.1016/j.jde.2017.10.027
[7]  Duvaut, G. and Lions, J.L. (1972) Inéquations en Thermoélasticité et Magnétohydrodynamique. Archive for Rational Mechanics and Analysis, 46, 241-279.
https://doi.org/10.1007/BF00250512
[8]  Sermange, M. and Temam, R. (1983) Some Mathematical Questions Related to the MHD Equations. Communications on Pure and Applied Mathematics, 36, 635-664.
https://doi.org/10.1002/cpa.3160360506

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133