全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

混沌时间序列预测算法研究
Research on Chaotic Time Series Prediction Algorithms

DOI: 10.12677/aam.2025.143124, PP. 364-372

Keywords: 混沌时间序列,预测,机器学习
Chaotic Time Series
, Prediction, Machine Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

混沌现象在自然界的各种动态系统中广泛存在,例如天气模式、流体湍流和生物神经信号传递。由于这些系统的复杂性,通常无法获得精确的数学模型,且只能获得可观测的时间序列数据。因此,利用已知的时间序列数据预测未来的系统行为至关重要。本文提出了一种结合时序卷积网络(TCN)的长短时记忆网络,旨在重构的相空间中进行混沌时间序列的预测。我们使用连续与离散动力系统生成的数据集,经过将长短时记忆网络(TCN-LSTM)与其他四种预测模型(TCN、LSTM、MLP和SVR)进行了对比实验。实验结果表明,TCN-LSTM模型的预测能力要优于其他模型,具体表现为均方根误差(RMSE)和平均绝对误差(MAE)最接近0,而决定系数(R2)最接近1。结果表明,TCN能有效提取重构相空间中的空间特征,而LSTM能够充分捕捉时间序列中的长期依赖关系,从而实现了更为准确的预测。
Chaotic phenomena are widely present in various dynamic systems in nature, such as weather patterns, fluid turbulence, and biological neural signal transmission. Due to the complexity of these systems, it is often impossible to obtain precise mathematical models, and only observable time series data can be acquired. Therefore, predicting the future behavior of the system using known time series data is crucial. This paper proposes a chaotic time series prediction method that combines the Temporal Convolutional Network (TCN) with Long Short-Term Memory (LSTM) networks, aiming to predict chaotic time series in the reconstructed phase space. We use datasets generated by continuous and discrete dynamical systems and compare the performance of the TCN-LSTM model with four other prediction models (TCN, LSTM, MLP, and SVR). The experimental results show that the TCN-LSTM model outperforms the other models, with Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) values closest to zero, while the coefficient of determination (R2) is the closest to one. The results indicate that TCN effectively extracts spatial features in the reconstructed phase space, while LSTM captures long-term dependencies in the time series, enabling more accurate predictions.

References

[1]  Ott, E. (2002) Chaos in Dynamical Systems. 2nd edition, Cambridge University Press.
https://doi.org/10.1017/cbo9780511803260
[2]  Strogatz, S.H. (2018) Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. CRC Press.
[3]  韩敏, 任伟杰, 李柏松, 等. 混沌时间序列分析与预测研究综述[J]. 信息与控制, 2020, 49(1): 24-35.
[4]  Vlachas, P.R., Byeon, W., Wan, Z.Y., Sapsis, T.P. and Koumoutsakos, P. (2018) Data-Driven Forecasting of High-Dimensional Chaotic Systems with Long Short-Term Memory Networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474, Article ID: 20170844.
https://doi.org/10.1098/rspa.2017.0844
[5]  Wan, Z.Y., Vlachas, P., Koumoutsakos, P. and Sapsis, T. (2018) Data-Assisted Reduced-Order Modeling of Extreme Events in Complex Dynamical Systems. PLOS ONE, 13, e0197704.
https://doi.org/10.1371/journal.pone.0197704
[6]  Bednarski, B.P., Singh, A.D., Zhang, W., Jones, W.M., Naeim, A. and Ramezani, R. (2022) Temporal Convolutional Networks and Data Rebalancing for Clinical Length of Stay and Mortality Prediction. Scientific Reports, 12, Article No. 21247.
https://doi.org/10.1038/s41598-022-25472-z
[7]  Bai, S., Kolter, J.Z. and Koltun, V. (2018) An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv: 1803.01271
[8]  Dudukcu, H.V., Taskiran, M., Cam Taskiran, Z.G. and Yildirim, T. (2023) Temporal Convolutional Networks with RNN Approach for Chaotic Time Series Prediction. Applied Soft Computing, 133, Article ID: 109945.
https://doi.org/10.1016/j.asoc.2022.109945
[9]  Cheng, W., Wang, Y., Peng, Z., Ren, X., Shuai, Y., Zang, S., et al. (2021) High-efficiency Chaotic Time Series Prediction Based on Time Convolution Neural Network. Chaos, Solitons & Fractals, 152, Article ID: 111304.
https://doi.org/10.1016/j.chaos.2021.111304
[10]  黄伟建, 李永涛, 黄远. 基于混合神经网络和注意力机制的混沌时间序列预测[J]. 物理学报, 2021, 70(1): 235-243.
[11]  Wu, J., Wu, Q., Shen, J. and Cai, C. (2020) Towards Attention-Based Convolutional Long Short-Term Memory for Travel Time Prediction of Bus Journeys. Sensors, 20, Article 3354.
https://doi.org/10.3390/s20123354
[12]  吕金虎. 混沌时间序列分析及其应用[M]. 武汉: 武汉大学出版社, 2002.
[13]  Packard, N.H., Crutchfield, J.P., Farmer, J.D. and Shaw, R.S. (1980) Geometry from a Time Series. Physical Review Letters, 45, 712-716.
https://doi.org/10.1103/physrevlett.45.712
[14]  Takens, F. (1981) Detecting Strange Attractors in Turbulence. In: Rand, D. and Young, LS., Eds., Dynamical Systems and Turbulence, Warwick 1980, Springer, 366-381.
https://doi.org/10.1007/bfb0091924
[15]  Lorenz, E.N. (1963) Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20, 130-141.
https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
[16]  Chen, G. and Ueta, T. (1999) Yet Another Chaotic Attractor. International Journal of Bifurcation and Chaos, 9, 1465-1466.
https://doi.org/10.1142/s0218127499001024
[17]  May, R.M. (1979) Simple Mathematical Models with Complicated Dynamics. Nature, 261, 459-467.
[18]  Hilborn, R.C. (2000) Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press.
[19]  Hénon, M. (1976) A Two-Dimensional Mapping with a Strange Attractor. In: Hunt, B.R., Li, T.Y., Kennedy, J.A. and Nusse, H.E., Eds., The Theory of Chaotic Attractors, Springer, 94-102.
https://doi.org/10.1007/978-0-387-21830-4_8
[20]  姜振豪. 基于机器学习的混沌时间序列预测研究及应用[D]: [硕士学位论文]. 南京: 东南大学, 2018.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133