|
Hilbert空间中增量型不精确拟牛顿算法的局部收敛性分析
|
Abstract:
在图像处理,机器学习和工程学等应用领域中,通常需要处理一些定义在Hilbert空间中的大规模算子方程。为求解这类算子方程及最值问题,构造了一类增量型不精确Broyden方法并证明了该算法的线性收敛和局部超线性收敛性。该算法降低了在处理大规模问题中所产生的储存成本,并通过应用证明了该算法的有效性。
In application fields such as image processing, machine learning, and engineering, it is often necessary to solve large-scale operator equations defined in Hilbert spaces. To address such operator equations and optimization problems, a class of incremental inexact Broyden methods has been developed, and the linear convergence as well as local superlinear convergence of this algorithm has been proven. This algorithm reduces the storage costs associated with handling large-scale problems, and its effectiveness has been demonstrated through practical applications.
[1] | Zhang, W., Zhuang, P., Sun, H., Li, G., Kwong, S. and Li, C. (2022) Underwater Image Enhancement via Minimal Color Loss and Locally Adaptive Contrast Enhancement. IEEE Transactions on Image Processing, 31, 3997-4010. https://doi.org/10.1109/tip.2022.3177129 |
[2] | Xiang, H., Zou, Q., Nawaz, M.A., Huang, X., Zhang, F. and Yu, H. (2023) Deep Learning for Image Inpainting: A Survey. Pattern Recognition, 134, Article ID: 109046. https://doi.org/10.1016/j.patcog.2022.109046 |
[3] | Tian, C., Zheng, M., Zuo, W., Zhang, S., Zhang, Y. and Lin, C. (2024) A Cross Transformer for Image Denoising. Information Fusion, 102, Article ID: 102043. https://doi.org/10.1016/j.inffus.2023.102043 |
[4] | Hamdia, K.M., Zhuang, X. and Rabczuk, T. (2020) An Efficient Optimization Approach for Designing Machine Learning Models Based on Genetic Algorithm. Neural Computing and Applications, 33, 1923-1933. https://doi.org/10.1007/s00521-020-05035-x |
[5] | Zhang, J. (2019) Gradient Descent Based Optimization Algorithms for Deep Learning Models Training. |
[6] | Yan, G., Zou, H., Wang, S., Zhao, L., Wu, Z. and Zhang, W. (2022) Bio-Inspired Toe-Like Structure for Low-Frequency Vibration Isolation. Mechanical Systems and Signal Processing, 162, Article ID: 108010. https://doi.org/10.1016/j.ymssp.2021.108010 |
[7] | Li, H.N., Wang, W., Lai, S.K., Yao, L.Q. and Li, C. (2023) Nonlinear Vibration and Stability Analysis of Rotating Functionally Graded Piezoelectric Nanobeams. International Journal of Structural Stability and Dynamics, 24, Article ID: 2450103. https://doi.org/10.1142/s0219455424501037 |
[8] | Broyden, C.G. (1965) A Class of Methods for Solving Nonlinear Simultaneous Equations. Mathematics of Computation, 19, 577-593. https://doi.org/10.1090/s0025-5718-1965-0198670-6 |
[9] | Sachs, E.W. (1986) Broyden’s Method in Hilbert Space. Mathematical Programming, 35, 71-82. https://doi.org/10.1007/bf01589442 |
[10] | 刘晶, 高岩. Banach空间中半光滑算子方程的不精确牛顿法(英文) [J]. 运筹学学报, 2010, 14(3): 41-47. |
[11] | 李丙通, 贾春霞. 不精确高斯法的局部收敛性质[J]. 上海师范大学学报(自然科学版), 2011, 40(5): 460-468. |
[12] | 路云龙. 求解无约束极大极小问题的光滑化不精确牛顿算法[J]. 北华大学学报(自然科学版), 2014, 15(5): 593-595. |
[13] | 王娟, 于波. 一类不精确拟牛顿型算法的局部收敛性分析[J]. 数学的实践与认识, 2017, 47(19): 237-244. |
[14] | Mokhtari, A., Eisen, M. and Ribeiro, A. (2018) IQN: An Incremental Quasi-Newton Method with Local Superlinear Convergence Rate. SIAM Journal on Optimization, 28, 1670-1698. https://doi.org/10.1137/17m1122943 |
[15] | 薛小平, 秦泗甜, 等. 非线性分析[M]. 北京: 科学出版社, 2017. |
[16] | Dennis, J.E. and Moré, J.J. (1974) A Characterization of Superlinear Convergence and Its Application to Quasi-Newton Methods. Mathematics of Computation, 28, 549-560. https://doi.org/10.1090/s0025-5718-1974-0343581-1 |
[17] | Anselone, P.M. and Davis, J. (1971) Collectively Compact Operator Approximation Theory and Applications to Integral Equations. |