全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

边界条件为控制函数的双曲方程的数值方法
A Numerical Method for Hyperbolic Equations with Boundary Conditions of Control Functions

DOI: 10.12677/aam.2025.143109, PP. 229-236

Keywords: 双曲方程,控制函数,解析解,数值解,收敛速度
Hyperbolic Equation
, Control Function, Analytical Solution, Numerical Solution, Convergence Rate

Full-Text   Cite this paper   Add to My Lib

Abstract:

在这篇文章里,我们考虑源自于控制消振问题的双曲方程,由于它的边值条件是需求解的控制函数,导致它不同于通常的偏微分方程的定解问题。在没有关于初始位移和初始速度的任何假设下,给出了控制函数的解析形式,截取级数的前2(N + 1)项作为数值逼近解,获得了数值逼近的收敛速度,数值实验验证了理论结果。
In this paper, we are concerned with the development of numerical method for a class of hyperbolic equations, which are originated from the problem of vibration control and elimination in practice. Since its boundary condition is the control function which is needed to be solved, it is different from the ordinary initial value and boundary value problems of partial differential equations. Without any assumptions on initial displacement and initial velocity, the analytical form of the control function is given, and a numerical approximation solution is obtained by intercepting the first 2(N + 1) terms of the series, and a convergence rate of numerical approximation is analyzed. Numerical experiments confirm the theoretical results.

References

[1]  刘盾. 实用数学物理方程[M]. 重庆: 重庆大学出版社, 1999.
[2]  李荣华, 冯果忱. 微分方程数值解法[M]. 北京: 高等教育出版社, 2001.
[3]  Susanne, C., Brenner, L. and Ridgway, S. (1994) The Mathematical Theory of Finite Element Methods. Springer-Verlag.
[4]  Du, S.H., Lin, R.C. and Zhang, Z.M. (2021) Robust Recovery-Type A Posteriori Error Estimators for Streamline Upwind/Petrov Galerkin Discretizations for Singularly Perturbed Problems. Applied Numerical Mathematics, 168, 23-40.
https://doi.org/10.1016/j.apnum.2021.05.020
[5]  Shen, J. and Tang, T. (2006) Spectral and High-Order Methods with Applications. Science Press.
[6]  He, J.C., et al. (2020) ReLU Deep Neural Networks and Linear Finite Elements. Journal of Computational Mathematics, 38, 502-527.
https://doi.org/10.4208/jcm.1901-m2018-0160
[7]  王元明. 数学物理方程与特殊函数[M]. 北京: 高等教育出版社, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133