|
时延QoS要求约束的业务流量卸载算法
|
Abstract:
随着网络技术的不断发展,通信网络中的业务流量和终端数量急剧增加,导致网络传输的复杂性和负载压力显著上升。业务流量卸载通过将部分业务从主网络卸载至辅助网络或边缘计算节点,以缓解主网络的压力,提高整体网络的服务质量。本文研究了在时延QoS要求约束下,业务流量的卸载算法。结合有效容量和有效带宽理论,确保在高负载条件下满足业务的统计型时延QoS要求。通过排队论、有效容量和有效带宽理论构建时延分析模型,设计了流量卸载算法。基于不同网络的服务速率,求解相应的时延违反概率,在此基础上,计算不同网络的可支持的最大到达率,对业务流量进行权重分配,从而实现了对业务流量的动态卸载,确保了各网络资源的优化利用和系统性能的提升。仿真结果表明,在时延QoS约束条件下,算法能够有效降低网络时延,提高网络稳定性和服务质量。
With the continuous development of network technology, traffic and the number of terminals in the communication network has increased sharply, resulting in a significant increase in the complexity and load pressure of network transmission. Unload some services from the primary network to the secondary network or edge computing nodes to relieve the pressure on the primary network and improve the overall network service quality. This paper studies the traffic offloading algorithm under the constraint of delay QoS requirements. Combining the theory of effective capacity and effective bandwidth, the QoS requirements of statistical delay can be satisfied under high load conditions. Based on queuing theory, effective capacity theory and effective bandwidth theory, the delay analysis model is constructed, and the traffic offloading algorithm is designed. Based on the service rate of different networks, the corresponding delay violation probability is solved. On this basis, the maximum arrival rate supported by different networks is calculated, and the weight of service traffic is assigned. In this way, the dynamic unloading of service traffic is realized, and the optimal utilization of network resources and the improvement of system performance are ensured. Simulation results show that the algorithm can effectively reduce network delay and improve network stability and service quality under the delay QoS constraint.
[1] | 高建勋, 张永红. 通信网络资源管理思路探讨[J]. 中国新通信, 2021, 23(3): 27-29. |
[2] | Tolba, B., Abo-Zahhad, M., Elsabrouty, M., Uchiyama, A. and El-Malek, A.H.A. (2024) Joint User Association, Service Caching, and Task Offloading in Multi-Tier Communication/Multi-Tier Edge Computing Heterogeneous Networks. Ad Hoc Networks, 160, Article 103500. https://doi.org/10.1016/j.adhoc.2024.103500 |
[3] | Wu, D. and Negi, R. (2003) Effective Capacity: A Wireless Link Model for Support of Quality of Service. IEEE Transactions on Wireless Communications, 2, 630-643. |
[4] | Wang, J. and Zhang, X. (2016). Heterogeneous QoS-Driven Resource Adaptation over Full-Duplex Relay Networks. 2016 IEEE Global Communications Conference (GLOBECOM), Washington, 4-8 December 2016, 1-6. https://doi.org/10.1109/glocom.2016.7841869 |
[5] | Zhang, X. and Wang, J. (2018) Joint Heterogeneous Statistical-QoS/QoE Provisionings for Edge-Computing Based Wifi Offloading over 5G Mobile Wireless Networks. 2018 52nd Annual Conference on Information Sciences and Systems (CISS), Princeton, 21-23 March 2018, 1-6. https://doi.org/10.1109/ciss.2018.8362265 |
[6] | Chang, C. (2000) Performance Guarantees in Communication Networks. Springer-Verlag. |
[7] | 张志飞, 王黎伟, 裘正定. 时延约束下的等效带宽估计[J]. 通信学报, 2000(12): 73-77. |
[8] | 石文孝. 通信网理论与应用[M]. 第2版. 北京: 电子工业出版社, 2016. |
[9] | Chang, C.S. and Thomas, J.A. (1999) Effective Bandwidth in High-Speed Digital Networks. IEEE Journal on Selected Areas in Communications, 13, 1091-1100. https://doi.org/10.1109/49.400664 |
[10] | 陈有汉, 胡仲海, 桂志波. 考虑不确定信息的QoS路由算法综述[J]. 计算机工程与应用, 2006, 42(15): 125-128. |
[11] | 迟学芬, 马丽君, 王雅辉, 等. 针对M2M业务的IEEE 802.11优化及其性能评价[J]. 吉林大学学报(工学版), 2014, 44(5): 1488-1497. |
[12] | 张品. 网络中QoS路由问题的研究[D]: [博士学位论文]. 成都: 电子科技大学, 2004. |
[13] | 余翔, 曲原宇, 杨路. 空天地边缘计算网络任务卸载策略[J/OL]. 电讯技术: 1-10. https://doi.org/10.20079/j.issn.1001-893x.240110001, 2024-05-31. |
[14] | 杨守义, 李富康, 任瑞敏. 信任环境下考虑系统公平性的边缘计算卸载策略和资源分配[J]. 通信学报, 2024, 45(3): 142-154. |
[15] | 张光华, 徐航, 万恩晗. 面向移动边缘计算的任务卸载方法研究[J]. 吉林大学学报(信息科学版), 2024, 42(2): 210-216. |
[16] | Cheng, W., Zhang, X. and Zhang, H. (2016) Optimal Power Allocation with Statistical QoS Provisioning for D2D and Cellular Communications over Underlaying Wireless Networks. IEEE Journal on Selected Areas in Communications, 34, 151-162. https://doi.org/10.1109/jsac.2015.2476075 |
[17] | Sun, W. and Li, J. (2023) Power Allocation Optimization for Hybrid Information and Energy Transfer with Massive MIMO Downlink. IET Communications, 17, 1998-2008. https://doi.org/10.1049/cmu2.12672 |
[18] | 沈伟达. 时延QoS约束下的带宽估计与服务优化研究[D]: [硕士学位论文]. 吉林: 吉林化工学院, 2022. |
[19] | Ya, M., Ase, A. and La, H. (2021) A Queueing Theory Approach to Traffic Offloading in Heterogeneous Cellular Networks. AEU-International Journal of Electronics and Communications, 139, Article ID: 153910. https://doi.org/10.1016/j.aeue.2021.153910 |
[20] | Anand, G., Faizan, Q., Sang, D.D., et al. 基于排序的网络选择在5G异构网络中实现流量卸载[J]. 工程科技导报, 2019, 12(2): 9-16. |
[21] | 孙洪亮, 赵创业, 付月. ALOHA接入机制下时延QoS保障算法[J]. 软件, 2021, 42(7): 85-87. |
[22] | 鲁宁宁. 5G小蜂窝系统功率控制方法研究[D]: [硕士学位论文]. 南京: 东南大学, 2016. |
[23] | Zhao, J., Ning, Y., Gong, Y. and Ran, R. (2017) Power Control with Power Budget for Uplink Transmission in Heterogeneous Networks. 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, 24-27 September 2017, 1-5. https://doi.org/10.1109/vtcfall.2017.8287973 |
[24] | 王俊社, 蒋彤彤, 张琛, 等. 异构网络中基于非合作博弈的功率控制算法[J]. 科学技术与工程, 2019, 19(29): 160-165. |
[25] | 占庆祥, 刘如通, 谭国平. 基于强化学习的异构网络流量卸载方案研究[J]. 电子测量技术, 2018(2): 66-71. |