全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于随机镜像下降对称交替方向乘子法的非凸优化问题研究
The Research on Nonconvex Optimization Problems Based on Stochastic Mirror Descent Symmetric Alternating Direction Method of Multipliers

DOI: 10.12677/aam.2025.143104, PP. 176-191

Keywords: 约束优化,非凸非光滑优化,随机方差缩减算子,全局收敛
Constrained Optimization
, Nonconvex and Nonsmooth Optimization, Stochastic Variance Reduction Operator, Global Converges

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文考虑求解一类可分的带有等式约束的非凸非光滑优化问题,其目标函数是由有限个光滑函数的加权平均与适当下半连续函数的和函数组成。交替方向乘子法能够充分利用模型的特点,是目前求解该类问题有效方法之一,但由于数据规模大,传统的交替方向乘子法效率低下。本文提出“随机镜像下降对称交替方向乘子法”,该算法引入随机方差缩减算子,通过随机选取梯度信息减少梯度计算量,从而提高算法效率;同时使用布雷格曼(Bregman)距离以保证子问题具有显示解,此外算法的对偶变量以对称形式进行更新,提高了算法的高效性和稳定性。理论结果表明,在目标函数满足半代数性质时,该算法生成的迭代序列全局收敛到原问题的驻点。同时数值实验结果验证了算法的有效性。
This paper considers solving a class of separable nonconvex and nonsmooth optimization problems with equality constraints, where the objective function is composed of the weighted average of a finite number of smooth functions and the sum of another proper lower semicontinuous function. The Alternating Direction Method of Multipliers (ADMM) effectively leverages the characteristics of the model and is one of the popular and efficient methods for solving such problems. However, due to the large data scale, traditional ADMM suffers from low efficiency. This paper proposes the “Stochastic Mirror Descent Symmetric Alternating Direction Method of Multipliers”, introduces a stochastic variance reduction operator, which reduces the gradient computation by randomly selecting gradient information, thereby improving the efficiency of the algorithm. Additionally, it uses the Bregman distance to ensure well-posed subproblems. Furthermore, the dual variables of the algorithm are updated symmetrically, which not only extends the applicability of the algorithm but also enhances its efficiency and stability. Theoretical results show that when the objective function satisfies the semi-algebraic property, the iterative sequence generated by the algorithm globally converges to a stationary point of the original problem. Numerical experiments further validate the effectiveness of the algorithm.

References

[1]  Hsieh, C., Sustik, M., Dhillon, I. and Ravikumar, P. (2014) Quadratic Approximation for Sparse Inverse Covariance Es-timation. Journal of Machine Learning Research, 15, 2911-2947.
[2]  Papanikolopoulos, N.P. and Khosla, P.K. (1993) Adaptive Robotic Visual Tracking: Theory and Experiments. IEEE Transactions on Automatic Control, 38, 429-445.
https://doi.org/10.1109/9.210141
[3]  Kazem, R., Suad, J. and Abdulbaqi, H. (2021) Super-Resolution Using 3D Convolutional Neural Networks in CT Scan Image of COVID19. Turkish Journal of Computer and Mathematics Education, 12, 4408-4415.
[4]  Friedman, J., Hastie, T. and Tibshirani, R. (2007) Sparse Inverse Covariance Estimation with the Graphical Lasso. Biostatistics, 9, 432-441.
https://doi.org/10.1093/biostatistics/kxm045
[5]  Xu, J. and Chao, M. (2021) An Inertial Bregman Generalized Alternating Direction Method of Multipliers for Nonconvex Optimization. Journal of Applied Mathematics and Computing, 68, 1-27.
https://doi.org/10.1007/s12190-021-01590-1
[6]  Yin, J., Tang, C., Jian, J. and Huang, Q. (2024) A Partial Bregman ADMM with a General Relaxation Factor for Structured Nonconvex and Nonsmooth Optimization. Journal of Global Optimization, 89, 899-926.
https://doi.org/10.1007/s10898-024-01384-2
[7]  Glowinski, R., Karkkainen, T. and Majava, K. (2003) On the Convergence of Operator-Splitting Methods. Proceedings of CIMNE 2003: Numerical Methods for Scientific Computing, Variational Problems and Applications, Barcelona, Spain. 67-79.
[8]  He, B., Liu, H., Wang, Z. and Yuan, X. (2014) A Strictly Contractive Peaceman—Rachford Splitting Method for Convex Programming. SIAM Journal on Optimization, 24, 1011-1040.
https://doi.org/10.1137/13090849x
[9]  Schmidt, M., Le Roux, N. and Bach, F. (2016) Erratum To: Minimizing Finite Sums with the Stochastic Average Gradient. Mathematical Programming, 162, 113-113.
https://doi.org/10.1007/s10107-016-1051-1
[10]  Johnson, R. and Zhang, T. (2013) Accelerating Stochastic Gradient Descent Using Predictive Variance Reduction. Advances in Neural Information Processing Systems, 26, 315-323.
[11]  Nguyen, L., Liu, J. and Scheinberg, K. (2017) SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient. International Conference on Machine Learning, 70, 2613-2621.
[12]  Zhong, W. and Kwok, J. (2014) Fast Stochastic Alternating Direction Method of Multipliers. International Conference on Machine Learning, 32, 46-54.
[13]  Zheng, S. and Kwok, J. (2016) Fast-and-Light Stochastic ADMM. International Joint Conference on Artificial Intelligence, 25, 2407-2613.
[14]  Liu, Y., Shang, F. and Cheng, J. (2017) Accelerated Variance Reduced Stochastic ADMM. Proceedings of the AAAI Conference on Artificial Intelligence, 31, 2287-2293.
https://doi.org/10.1609/aaai.v31i1.10843
[15]  Huang, F. and Chen, S. (2018) Mini-Batch Stochastic ADMMs for Nonconvex Nonsmooth Optimization. arXiv: 1802.03284v3.
[16]  Bian, F., Liang, J. and Zhang, X. (2021) A Stochastic Alternating Direction Method of Multipliers for Non-Smooth and Non-Convex Optimization. Inverse Problems, 37, Article ID: 075009.
https://doi.org/10.1088/1361-6420/ac0966
[17]  Bauschke, H.H., Bolte, J. and Teboulle, M. (2017) A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications. Mathematics of Operations Research, 42, 330-348.
https://doi.org/10.1287/moor.2016.0817
[18]  Bregman, L.M. (1967) The Relaxation Method of Finding the Common Point of Convex Sets and Its Application to the Solution of Problems in Convex Programming. USSR Computational Mathematics and Mathematical Physics, 7, 200-217.
https://doi.org/10.1016/0041-5553(67)90040-7
[19]  Attouch, H., Bolte, J., Redont, P. and Soubeyran, A. (2010) Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality. Mathematics of Operations Research, 35, 438-457.
https://doi.org/10.1287/moor.1100.0449
[20]  Driggs, D., Tang, J., Liang, J., Davies, M. and Schönlieb, C. (2021) A Stochastic Proximal Alternating Minimization for Nonsmooth and Nonconvex Optimization. SIAM Journal on Imaging Sciences, 14, 1932-1970.
https://doi.org/10.1137/20m1387213
[21]  Davis, D. (2016) The Asynchronous PALM Algorithm for Nonsmooth Nonconvex Problems. arXiv: 1604.00526.
[22]  Bolte, J., Sabach, S. and Teboulle, M. (2013) Proximal Alternating Linearized Minimization for Nonconvex and Nonsmooth Problems. Mathematical Programming, 146, 459-494.
https://doi.org/10.1007/s10107-013-0701-9

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133