The rapid development of artificial intelligence (AI) technology is profoundly reshaping all walks of life, especially in the medical field. AI provides innovative tools for medical diagnosis, treatment, and management and lays a solid foundation for personalized medicine and precision medicine. This paper reviews the latest progress in the application of AI technologies such as machine learning (ML) and deep learning (DL) in ophthalmic diseases.
References
[1]
Krishnan, G., Singh, S., Pathania, M., Gosavi, S., Abhishek, S., Parchani, A., et al. (2023) Artificial Intelligence in Clinical Medicine: Catalyzing a Sustainable Global Healthcare Paradigm. Frontiers in Artificial Intelligence, 6, Article ID: 1227091. https://doi.org/10.3389/frai.2023.1227091
[2]
Sakly, H., Guetari, R. and Kraiem, N. (2024) Scalable Artificial Intelligence for Healthcare: Advancing AI Solutions for Global Health Challenges. CRC Press.
[3]
Zhou, F., Xie, H.L. and Qu, J. (2008) Ophthalmic Resource Status and Service Ability Survey. China Hospital, No. 4, 14-16.
[4]
Reid, J.E. and Eaton, E. (2019) Artificial Intelligence for Pediatric Ophthalmology. Current Opinion in Ophthalmology, 30, 337-346. https://doi.org/10.1097/icu.0000000000000593
[5]
Hogarty, D.T., Mackey, D.A. and Hewitt, A.W. (2018) Current State and Future Prospects of Artificial Intelligence in Ophthalmology: A Review. Clinical & Experimental Ophthalmology, 47, 128-139. https://doi.org/10.1111/ceo.13381
[6]
Holden, B.A., Fricke, T.R., Wilson, D.A., Jong, M., Naidoo, K.S., Sankaridurg, P., et al. (2016) Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology, 123, 1036-1042. https://doi.org/10.1016/j.ophtha.2016.01.006
[7]
Dong, L., Kang, Y.K., Li, Y., Wei, W.B. and Jonas, J.B. (2020) Prevalence and Time Trends of Myopia in Children and Adolescents in China: A Systemic Review and Meta-Analysis. Retina, 40, 399-411. https://doi.org/10.1097/iae.0000000000002590
[8]
Wen, L.B., Lan, W.Z., Li, X.N., et al. (2017) Study on the Accuracy and Stability of the New Device “Cloud Clip” for Objective Monitoring of Myopia-Related Environ-mental Factors. Chinese Journal of Optometry and Visual Sciences, 19, 198-203.
[9]
Cao, Y., Lan, W., Wen, L., Li, X., Pan, L., Wang, X., et al. (2020) An Effectiveness Study of a Wearable Device (Clouclip) Intervention in Unhealthy Visual Behaviors among School-Age Children: A Pilot Study. Medicine, 99, e17992. https://doi.org/10.1097/md.0000000000017992
[10]
Pei, C.L. (2014) Study on Visual Health Behavior and Myopia Screening Methods for Primary and Middle School Students in China. Anhui Medical University.
[11]
Ling, Y.N.C., Zhu, X. and Ang, M. (2024) Artificial Intelligence in Myopia in Children: Current Trends and Future Directions. Current Opinion in Ophthalmology, 35, 463-471.
[12]
Yamada, T., Hatt, S.R., Leske, D.A., Moke, P.S., Parrucci, N.L., Reese, J.J., et al. (2015) A New Computer-Based Pediatric Vision-Screening Test. Journal of American Association for Pediatric Ophthalmology and Strabismus, 19, 157-162. https://doi.org/10.1016/j.jaapos.2015.01.011
[13]
Rosenfield, M. and Ciuffreda, K.J. (2017) Evaluation of the Svone Handheld Autorefractor in a Pediatric Population. Optometry and Vision Science, 94, 159-165. https://doi.org/10.1097/opx.0000000000000999
[14]
Yang, Y., Li, R., Lin, D., Zhang, X., Li, W., Wang, J., et al. (2020) Automatic Identification of Myopia Based on Ocular Appearance Images Using Deep Learning. Annals of Translational Medicine, 8, 705. https://doi.org/10.21037/atm.2019.12.39
[15]
Yang, X., Chen, G., Qian, Y., Wang, Y., Zhai, Y., Fan, D., et al. (2020) Prediction of Myopia in Adolescents through Machine Learning Methods. InternationalJournalofEnvironmentalResearchandPublicHealth, 17, Article No. 463. https://doi.org/10.3390/ijerph17020463
[16]
Hemelings, R., Elen, B., Blaschko, M.B., Jacob, J., Stalmans, I. and De Boever, P. (2021) Pathological Myopia Classification with Simultaneous Lesion Segmentation Using Deep Learning. ComputerMethodsandProgramsinBiomedicine, 199, Article 105920. https://doi.org/10.1016/j.cmpb.2020.105920
[17]
Li, Y., Feng, W., Zhao, X., Liu, B., Zhang, Y., Chi, W., et al. (2020) Development and Validation of a Deep Learning System to Screen Vision-Threatening Conditions in High Myopia Using Optical Coherence Tomography Images. BritishJournalofOphthalmology, 106, 633-639. https://doi.org/10.1136/bjophthalmol-2020-317825
[18]
Sogawa, T., Tabuchi, H., Nagasato, D., Masumoto, H., Ikuno, Y., Ohsugi, H., et al. (2020) Accuracy of a Deep Convolutional Neural Network in the Detection of Myopic Macular Diseases Using Swept-Source Optical Coherence Tomography. PLOS ONE, 15, e0227240. https://doi.org/10.1371/journal.pone.0227240
[19]
Godefrooij, D.A., de Wit, G.A., Uiterwaal, C.S., Imhof, S.M. and Wisse, R.P.L. (2017) Age-Specific Incidence and Prevalence of Keratoconus: A Nationwide Registration Study. American Journal of Ophthalmology, 175, 169-172. https://doi.org/10.1016/j.ajo.2016.12.015
[20]
de Sanctis, U., Loiacono, C., Richiardi, L., Turco, D., Mutani, B. and Grignolo, F.M. (2008) Sensitivity and Specificity of Posterior Corneal Elevation Measured by Pentacam in Discriminating Keratoconus/Subclinical Keratoconus. Ophthalmology, 115, 1534-1539. https://doi.org/10.1016/j.ophtha.2008.02.020
[21]
Gordon-Shaag, A., Millodot, M., Ifrah, R. and Shneor, E. (2012) Aberrations and Topography in Normal, Keratoconus-Suspect, and Keratoconic Eyes. Optometry and Vision Science, 89, 411-418. https://doi.org/10.1097/opx.0b013e318249d727
[22]
Whitcher, J.P., Srinivasan, M. and Upadhyay, M.P. (2001) Corneal Blindness: A Global Perspective. Bulletin of the World Health Organization, 79, 214-221.
[23]
Kanski, J.J. and Bowling, B. (2011) Neuro-Ophthalmology. In: Clinical Ophthalmology: A Systematic Approach, Elsevier, 783-860.
[24]
Kuo, B., Chang, W., Liao, T., Liu, F., Liu, H., Chu, H., et al. (2020) Keratoconus Screening Based on Deep Learning Approach of Corneal Topography. Translational Vision Science & Technology, 9, Article No. 53. https://doi.org/10.1167/tvst.9.2.53
[25]
Kamiya, K., Ayatsuka, Y., Kato, Y., Fujimura, F., Takahashi, M., Shoji, N., et al. (2019) Keratoconus Detection Using Deep Learning of Colour-Coded Maps with Anterior Segment Optical Coherence Tomography: A Diagnostic Accuracy Study. BMJ Open, 9, e031313. https://doi.org/10.1136/bmjopen-2019-031313
[26]
Balyen, L. and Peto, T. (2019) Promising Artificial Intelligence-Machine Learning Deep Learning Algorithms in Ophthalmology. The Asia-Pacific Journal of Ophthalmology (Phila), 8, 264-272.
[27]
LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep Learning. Nature, 521, 436-444. https://doi.org/10.1038/nature14539
[28]
Nawathey, S.N., Reddy, A., Tak, N., et al. (2024) Cataract Diagnosis at Scale: Leveraging Cloud Resources for Accurate and Eco-Friendly Fundus Image Analysis with AI. Investigative Ophthalmology & Visual Science, 65, 3717.
[29]
Li, H.Q., et al. (2010) A Computer-Aided Diagnosis System of Nuclear Cataract. IEEE Transactions on Biomedical Engineering, 57, 1690-1698. https://doi.org/10.1109/tbme.2010.2041454
[30]
Zhang, H., Niu, K., Xiong, Y., Yang, W., He, Z. and Song, H. (2019) Automatic Cataract Grading Methods Based on Deep Learning. Computer Methods and Programs in Biomedicine, 182, Article ID: 104978. https://doi.org/10.1016/j.cmpb.2019.07.006
[31]
Aristodemou, P., Knox Cartwright, N.E., Sparrow, J.M. and Johnston, R.L. (2011) Formula Choice: Hoffer Q, Holladay 1, or SRK/T and Refractive Outcomes in 8108 Eyes after Cataract Surgery with Biometry by Partial Coherence Interferometry. Journal of Cataract and Refractive Surgery, 37, 63-71. https://doi.org/10.1016/j.jcrs.2010.07.032
[32]
Siddiqui, A.A., Ladas, J.G. and Lee, J.K. (2020) Artificial Intelligence in Cornea, Refractive, and Cataract Surgery. Current Opinion in Ophthalmology, 31, 253-260. https://doi.org/10.1097/icu.0000000000000673
[33]
Soh, Z., Yu, M., Betzler, B.K., Majithia, S., Thakur, S., Tham, Y.C., et al. (2021) The Global Extent of Undetected Glaucoma in Adults: A Systematic Review and Meta-Analysis. Ophthalmology, 128, 1393-1404. https://doi.org/10.1016/j.ophtha.2021.04.009
[34]
Weinreb, R.N. and Khaw, P.T. (2004) Primary Open-Angle Glaucoma. The Lancet, 363, 1711-1720. https://doi.org/10.1016/s0140-6736(04)16257-0
[35]
Liang, Y.B., Friedman, D.S., Zhou, Q., Yang, X., Sun, L.P., Guo, L.X., et al. (2011) Prevalence of Primary Open Angle Glaucoma in a Rural Adult Chinese Population: The Handan Eye Study. Investigative Opthalmology & Visual Science, 52, 8250-8257. https://doi.org/10.1167/iovs.11-7472
[36]
Mwanza, J., Lee, G., Budenz, D.L., Warren, J.L., Wall, M., Artes, P.H., et al. (2018) Validation of the UNC OCT Index for the Diagnosis of Early Glaucoma. Translational Vision Science & Technology, 7, 16. https://doi.org/10.1167/tvst.7.2.16
[37]
Liu, H., Li, L., Wormstone, I.M., Qiao, C., Zhang, C., Liu, P., et al. (2019) Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs. JAMA Ophthalmology, 137, 1353-1360. https://doi.org/10.1001/jamaophthalmol.2019.3501
[38]
Parrish, R.K., Schiffman, J.C., Feuer, W.J., Anderson, D.R., Budenz, D.L., Wells-Albornoz, M., et al. (2005) Test-Retest Reproducibility of Optic Disk Deterioration Detected from Stereophotographs by Masked Graders. American Journal of Ophthalmology, 140, 762-764. https://doi.org/10.1016/j.ajo.2005.04.044
[39]
Li, F., Yan, L., Wang, Y., Shi, J., Chen, H., Zhang, X., et al. (2020) Deep Learning-Based Automated Detection of Glaucomatous Optic Neuropathy on Color Fundus Photographs. Graefe’s Archive for Clinical and Experimental Ophthalmology, 258, 851-867. https://doi.org/10.1007/s00417-020-04609-8
[40]
Medeiros, F.A., Jammal, A.A. and Thompson, A.C. (2019) From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs. Ophthalmology, 126, 513-521. https://doi.org/10.1016/j.ophtha.2018.12.033
[41]
Glaucoma Group of Ophthalmology Branch of Chinese Medical Association, Ophthalmology Artificial Intelligence Group of China Medical Equipment Association (2020) Guidelines for Standardized Design and Application of Artificial Intelligence Glau-Coma Auxiliary Screening System Based on Fundus Photography in China. Chinese Journal of Ophthalmology, 56, 423-432.
[42]
Mariottoni, E.B., Jammal, A.A., Berchuck, S.I., Shigueoka, L.S., Tavares, I.M. and Medeiros, F.A. (2021) An Objective Structural and Functional Reference Standard in Glaucoma. Scientific Reports, 11, Article No. 1752. https://doi.org/10.1038/s41598-021-80993-3
[43]
Lee, J., Kim, Y.K., Park, K.H. and Jeoung, J.W. (2020) Diagnosing Glaucoma with Spectral-Domain Optical Coherence Tomography Using Deep Learning Classifier. Journal of Glaucoma, 29, 287-294. https://doi.org/10.1097/ijg.0000000000001458
[44]
Thompson, A.C., Jammal, A.A., Berchuck, S.I., Mariottoni, E.B. and Medeiros, F.A. (2020) Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma from Optical Coherence Tomography Scans. JAMA Ophthalmology, 138, 333-339. https://doi.org/10.1001/jamaophthalmol.2019.5983
[45]
Fu, H.Z., Garvin, M.K., MacGillivray, T., et al. (2019) Ophthalmic Medical Image Analysis. Springer, 52-59.
[46]
Maetschke, S., Antony, B., Ishikawa, H., Wollstein, G., Schuman, J. and Garnavi, R. (2019) A Feature Agnostic Approach for Glaucoma Detection in OCT Volumes. PLOS ONE, 14, e0219126. https://doi.org/10.1371/journal.pone.0219126
[47]
Li, F., Wang, Z., Qu, G., Song, D., Yuan, Y., Xu, Y., et al. (2018) Automatic Differentiation of Glaucoma Visual Field from Non-Glaucoma Visual Filed Using Deep Convolutional Neural Network. BMC Medical Imaging, 18, Article No. 35. https://doi.org/10.1186/s12880-018-0273-5
[48]
Elze, T., Pasquale, L.R., Shen, L.Q., Chen, T.C., Wiggs, J.L. and Bex, P.J. (2015) Patterns of Functional Vision Loss in Glaucoma Determined with Archetypal Analysis. Journal of the Royal Society Interface, 12, Article ID: 20141118. https://doi.org/10.1098/rsif.2014.1118
[49]
Wang, M., Shen, L.Q., Pasquale, L.R., Petrakos, P., Formica, S., Boland, M.V., et al. (2019) An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis. Investigative Opthalmology & Visual Science, 60, 365-375. https://doi.org/10.1167/iovs.18-25568
[50]
Bowd, C., Hao, J., Tavares, I.M., Medeiros, F.A., Zangwill, L.M., Lee, T., et al. (2008) Bayesian Machine Learning Classifiers for Combining Structural and Functional Measurements to Classify Healthy and Glaucomatous Eyes. Investigative Opthalmology & Visual Science, 49, 945-953. https://doi.org/10.1167/iovs.07-1083
[51]
Mursch-Edlmayr, A.S., Ng, W.S., Diniz-Filho, A., Sousa, D.C., Arnould, L., Schlenker, M.B., et al. (2020) Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice. Translational Vision Science & Technology, 9, Article No. 55. https://doi.org/10.1167/tvst.9.2.55
[52]
Xiong, J., Li, F., Song, D.P., et al. (2022) Multimodal Machine Learning Using Visual Fields and Peripapillary Circular OCT Scans in Detection of Glaucomatous Optic Neuropathy. Ophthalmology, 129, 171-180. https://doi.org/10.1016/j.ophtha.2021.07.032
[53]
Wong, W.L., Su, X., Li, X., Cheung, C.M.G., Klein, R., Cheng, C., et al. (2014) Global Prevalence of Age-Related Macular Degeneration and Disease Burden Projection for 2020 and 2040: A Systematic Review and Meta-analysis. The Lancet Global Health, 2, e106-e116. https://doi.org/10.1016/s2214-109x(13)70145-1
[54]
Gilbert, M.J. and Sun, J.K. (2020) Artificial Intelligence in the Assessment of Diabetic Retinopathy from Fundus Photographs. Seminars in Ophthalmology, 35, 325-332. https://doi.org/10.1080/08820538.2020.1855358
[55]
Cheung, N., Mitchell, P. and Wong, T.Y. (2010) Diabetic Retinopathy. The Lancet, 376, 124-136. https://doi.org/10.1016/s0140-6736(09)62124-3
[56]
Li, N., Ma, M., Lai, M., Gu, L., Kang, M., Wang, Z., et al. (2021) A Stratified Analysis of a Deep Learning Algorithm in the Diagnosis of Diabetic Retinopathy in a Real‐world Study. Journal of Diabetes, 14, 111-120. https://doi.org/10.1111/1753-0407.13241
[57]
Cheung, C.Y., Tang, F., Ting, D.S.W., Tan, G.S.W. and Wong, T.Y. (2019) Artificial Intelligence in Diabetic Eye Disease Screening. The Asia-Pacific Journal of Ophthalmology (Phila), 8, 158-164.
[58]
Yu, C., Xie, S., Niu, S., Ji, Z., Fan, W., Yuan, S., et al. (2019) Hyper‐Reflective Foci Segmentation in SD‐OCT Retinal Images with Diabetic Retinopathy Using Deep Convolutional Neural Networks. Medical Physics, 46, 4502-4519. https://doi.org/10.1002/mp.13728
[59]
Topol, E.J. (2019) High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nature Medicine, 25, 44-56. https://doi.org/10.1038/s41591-018-0300-7
[60]
Korot, E., Wood, E., Weiner, A., Sim, D.A. and Trese, M. (2019) A Renaissance of Teleophthalmology through Artificial Intelligence. Eye, 33, 861-863. https://doi.org/10.1038/s41433-018-0324-8
[61]
Zhao, Y., Li, X., Li, S., Dong, M., Yu, H., Zhang, M., et al. (2022) Using Machine Learning Techniques to Develop Risk Prediction Models for the Risk of Incident Diabetic Retinopathy among Patients with Type 2 Diabetes Mellitus: A Cohort Study. Frontiers in Endocrinology, 13, Article ID: 876559. https://doi.org/10.3389/fendo.2022.876559
[62]
Celi, L.A., Hinske Christian, L., Alterovitz, G. and Szolovits, P. (2008) An Artificial Intelligence Tool to Predict Fluid Requirement in the Intensive Care Unit: A Proof-of-Concept Study. Critical Care, 12, R151. https://doi.org/10.1186/cc7140
[63]
Yeh, T., Lo, K., Hwang, D., Lin, T. and Chou, Y. (2022) Evaluation of a Remote Telemedicine Platform Using a Novel Handheld Fundus Camera: Physician and Patient Perceptions from Real-World Experience. Journal of the Chinese Medical Association, 85, 793-798. https://doi.org/10.1097/jcma.0000000000000755
[64]
Heydon, P., Egan, C., Bolter, L., Chambers, R., Anderson, J., Aldington, S., et al. (2020) Prospective Evaluation of an Artificial Intelligence-Enabled Algorithm for Automated Diabetic Retinopathy Screening of 30000 Patients. British Journal of Ophthalmology, 105, 723-728. https://doi.org/10.1136/bjophthalmol-2020-316594
[65]
Pei, L., Huang, X., Mi, Q.L. and Jian, W.Y. (2020) Applied Research on Remote System Screening of Diabetic Retinopathy in Southwest China. Chinese Journal of Ophthalmology, Otorhinolaryngology, 10, 15-18, 30.
[66]
Wang, J., Hormel, T.T., Gao, L., Zang, P., Guo, Y., Wang, X., et al. (2020) Automated Diagnosis and Segmentation of Choroidal Neovascularization in OCT Angiography Using Deep Learning. Biomedical Optics Express, 11, 927-944. https://doi.org/10.1364/boe.379977
[67]
Sawai, Y., Miyata, M., Uji, A., Ooto, S., Tamura, H., Ueda-Arakawa, N., et al. (2020) Usefulness of Denoising Process to Depict Myopic Choroidal Neovascularisation Using a Single Optical Coherence Tomography Angiography Image. Scientific Reports, 10, Article No. 6172. https://doi.org/10.1038/s41598-020-62607-6
[68]
Solebo, A.L., Teoh, L. and Rahi, J. (2017) Epidemiology of Blindness in Children. Archives of Disease in Childhood, 102, 853-857. https://doi.org/10.1136/archdischild-2016-310532
[69]
Yi, L., Guo, Y.J., Fei, X.L., et al. (2024) Current Status of Clinical Use and Management of Artificial Intelligence Medical Devices Abroad. China Digital Medicine, 19, 72-79.
[70]
Peng, Y., Zhu, W., Chen, Z., Wang, M., Geng, L., Yu, K., et al. (2021) Automatic Staging for Retinopathy of Prematurity with Deep Feature Fusion and Ordinal Classification Strategy. IEEE Transactions on Medical Imaging, 40, 1750-1762. https://doi.org/10.1109/tmi.2021.3065753
[71]
Zhao, J., Lei, B., Wu, Z., Zhang, Y., Li, Y., Wang, L., et al. (2019) A Deep Learning Framework for Identifying Zone I in Retcam Images. IEEE Access, 7, 103530-103537. https://doi.org/10.1109/access.2019.2930120
[72]
Peng, Y., Chen, Z., Zhu, W., Shi, F., Wang, M., Zhou, Y., et al. (2022) Automatic Zoning for Retinopathy of Prematurity with Semi-Supervised Feature Calibration Adversarial Learning. Biomedical Optics Express, 13, 1968-1984. https://doi.org/10.1364/boe.447224
[73]
Campbell, J.P., Kim, S.J., Brown, J.M., et al. (2021) Evaluation of a Deep Learning-Derived Quantitative Retinopathy of Prematurity Severity Scale. Ophthalmology, 128, 1070-1076.
[74]
Campbell, J.P., Chiang, M.F., Chen, J.S., et al. (2022) Artificial Intelligence for Retinopathy of Prematurity: Validation of a Vascular Severity Scale against International Expert Diagnosis. Ophthalmology, 129, e69-e76.
[75]
Repka, M.X., Lum, F. and Burugapalli, B. (2018) Strabismus, Strabismus Surgery, and Reoperation Rate in the United States: Analysis from the IRIS Registry. Ophthalmology, 125, 1646-1653. https://doi.org/10.1016/j.ophtha.2018.04.024
[76]
Hu, J.Q., Zhu, C.H., Ye, X.H., et al. (2008) Diagnostic Evaluation of Color Doppler Ultrasound and CT, MRI in Orbital Diseases. Journal of Nanjing Medical University (Natural Science Edition), No. 1, 90-93.
[77]
de Figueiredo, L.A., Dias, J.V.P., Polati, M., Carricondo, P.C. and Debert, I. (2021) Strabismus and Artificial Intelligence App: Optimizing Diagnostic and Accuracy. Translational Vision Science & Technology, 10, Article No. 22. https://doi.org/10.1167/tvst.10.7.22
[78]
Fan, Z., Lu, J.W., Zheng, C., et al. (2018) Automated Strabismus Detection Based on Deep Neural Networks for Telemedicine Applications. http://arxiv.org/abs/1809.02940
[79]
Leite, F.H.F., Almeida, J.D.S.d., Cruz, L.B.d., Teixeira, J.A.M., Junior, G.B., Silva, A.C., et al. (2021) Surgical Planning of Horizontal Strabismus Using Multiple Output Regression Tree. Computers in Biology and Medicine, 134, Article ID: 104493. https://doi.org/10.1016/j.compbiomed.2021.104493
[80]
(2024) The Value of Magnetic Resonance T2-Mapping in Evaluating the Activity of Graves Ophthalmopathy. Medical Journal of Chinese PLA, 49, 70-74.
[81]
Taylor, P.N., Zhang, L., Lee, R.W.J., Muller, I., Ezra, D.G., Dayan, C.M., et al. (2019) New Insights into the Pathogenesis and Nonsurgical Management of Graves Orbitopathy. Nature Reviews Endocrinology, 16, 104-116. https://doi.org/10.1038/s41574-019-0305-4
[82]
Bartalena, L. and Tanda, M.L. (2022) Current Concepts Regarding Graves’ Orbitopathy. Journal of Internal Medicine, 292, 692-716. https://doi.org/10.1111/joim.13524
[83]
Mayer, E.J., Fox, D.L., Herdman, G., Hsuan, J., Kabala, J., Goddard, P., et al. (2005) Signal Intensity, Clinical Activity and Cross-Sectional Areas on MRI Scans in Thyroid Eye Disease. European Journal of Radiology, 56, 20-24. https://doi.org/10.1016/j.ejrad.2005.03.027
[84]
Lin, C., Song, X., Li, L., Li, Y., Jiang, M., Sun, R., et al. (2021) Detection of Active and Inactive Phases of Thyroid-Associated Ophthalmopathy Using Deep Convolutional Neural Network. BMC Ophthalmology, 21, Article No. 39. https://doi.org/10.1186/s12886-020-01783-5
[85]
Yao, N., Li, L., Gao, Z., Zhao, C., Li, Y., Han, C., et al. (2023) Deep Learning-Based Diagnosis of Disease Activity in Patients with Graves’ Orbitopathy Using Orbital SPECT/CT. European Journal of Nuclear Medicine and Molecular Imaging, 50, 3666-3674. https://doi.org/10.1007/s00259-023-06312-2
[86]
Dolman, P.J. (2020) Dysthyroid Optic Neuropathy: Evaluation and Management. Journal of Endocrinological Investigation, 44, 421-429. https://doi.org/10.1007/s40618-020-01361-y
[87]
Wu, C., Li, S., Liu, X., Jiang, F. and Shi, B. (2022) Dms-mafm+efficientnet: A Hybrid Model for Predicting Dysthyroid Optic Neuropathy. Medical & Biological Engineering & Computing, 60, 3217-3230. https://doi.org/10.1007/s11517-022-02663-4
[88]
Kaliki, S., Shields, C. and Shields, J. (2015) Uveal Melanoma: Estimating Prognosis. Indian Journal of Ophthalmology, 63, 93-102. https://doi.org/10.4103/0301-4738.154367
[89]
Rantala, E.S., Hernberg, M.M., Piperno-Neumann, S., Grossniklaus, H.E. and Kivelä, T.T. (2022) Metastatic Uveal Melanoma: The Final Frontier. Progress in Retinal and Eye Research, 90, Article ID: 101041. https://doi.org/10.1016/j.preteyeres.2022.101041
[90]
Zhang, H., Liu, Y., Zhang, K., Hui, S., Feng, Y., Luo, J., et al. (2021) Validation of the Relationship between Iris Color and Uveal Melanoma Using Artificial Intelligence with Multiple Paths in a Large Chinese Population. Frontiers in Cell and Developmental Biology, 9, Article ID: 713209. https://doi.org/10.3389/fcell.2021.713209
[91]
Shields, C., Ancona-Lezama, D. and Dalvin, L. (2020) Modern Treatment of Retinoblastoma: A 2020 Review. Indian Journal of Ophthalmology, 68, Article No. 2356. https://doi.org/10.4103/ijo.ijo_721_20
[92]
Kumar, P., Suganthi, D., Valarmathi, K., Swain, M.P., Vashistha, P., Buddhi, D., et al. (2023) [Retracted] a Multi‐Thresholding‐Based Discriminative Neural Classifier for Detection of Retinoblastoma Using CNN Models. BioMed Research International, 2023, Article ID: 5803661. https://doi.org/10.1155/2023/5803661
[93]
Fu, R., Leader, J.K., Pradeep, T., Shi, J., Meng, X., Zhang, Y., et al. (2021) Automated Delineation of Orbital Abscess Depicted on CT Scan Using Deep Learning. Medical Physics, 48, 3721-3729. https://doi.org/10.1002/mp.14907
[94]
Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., et al. (2017) Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature, 542, 115-118. https://doi.org/10.1038/nature21056
[95]
Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., et al. (2017) A Survey on Deep Learning in Medical Image Analysis. Medical Image Analysis, 42, 60-88. https://doi.org/10.1016/j.media.2017.07.005
[96]
Lin, L., Lu, Y.M. and Ma, S.S. (2021) Efficacy of Ranibizumab Combined with Fundus Laser in the Treatment of Diabetic Retinopathy. Practical Medical Journal, 37, 2660-2664.
[97]
Fu, M., Yi, Z.H. and Chen, C.Z. (2022) Research Progress of Targeted Retinal Photocoagulation for Diabetic Retinopathy. International Journal of Ophthalmology, 22, 579 582.
[98]
Amadi-Obi, A., Yu, C., Liu, X., Mahdi, R.M., Clarke, G.L., Nussenblatt, R.B., et al. (2007) TH17 Cells Contribute to Uveitis and Scleritis and Are Expanded by IL-2 and Inhibited by Il-27/Stat1. Nature Medicine, 13, 711-718. https://doi.org/10.1038/nm1585
[99]
Mesquida, M., Leszczynska, A., Llorenç, V. and Adán, A. (2014) Interleukin-6 Blockade in Ocular Inflammatory Diseases. Clinical and Experimental Immunology, 176, 301-309. https://doi.org/10.1111/cei.12295
[100]
Durrant, J.D. and McCammon, J.A. (2010) Nnscore: A Neural-Network-Based Scoring Function for the Characterization of Protein-Ligand Complexes. Journal of Chemical Information and Modeling, 50, 1865-1871. https://doi.org/10.1021/ci100244v
[101]
Brylinski, M., Lee, S.Y., Zhou, H. and Skolnick, J. (2011) The Utility of Geometrical and Chemical Restraint Information Extracted from Predicted Ligand-Binding Sites in Protein Structure Refinement. Journal of Structural Biology, 173, 558-569. https://doi.org/10.1016/j.jsb.2010.09.009
[102]
Kovacs, K., Wagley, S., Quirk, M.T., Ceron, O.M., Silva, P.A., Singh, R.J., et al. (2012) Pharmacokinetic Study of Vitreous and Serum Concentrations of Triamcinolone Acetonide after Posterior Sub-Tenon’s Injection. American Journal of Ophthalmology, 153, 939-948. https://doi.org/10.1016/j.ajo.2011.10.021
[103]
Missel, P.J., Horner, M. and Muralikrishnan, R. (2010) Simulating Dissolution of Intravitreal Triamcinolone Acetonide Suspensions in an Anatomically Accurate Rabbit Eye Model. Pharmaceutical Research, 27, 1530-1546. https://doi.org/10.1007/s11095-010-0163-1
[104]
Liu, X.F., Sun, X.Y. and Zhu, X. (2021) Application Status and Challenges of Artificial Intelligence in New Drug Research and Development. Pharmaceutical Progress, 45, 494-501.