|
基于网络药理学和分子对接技术探讨恒古骨伤愈合剂促进骨折愈合的作用机制
|
Abstract:
目的:采用网络药理学以及分子对接技术分析恒古骨伤愈合剂促进骨折愈合的机制。方法:通过检索TCMSP等数据库获得恒古的主要化合物成分和靶点及疾病靶点。将药物和疾病共有靶点制作成韦恩图,建立PPI网络,对PPI网络进行拓扑分析,MC0DE版块进行聚类分析,筛选出核心基因。构建成分–疾病–靶点网络图。使用R4.0.3软件进行GO功能富集和KEGG信号通路富集分析,之后构建成分–疾病–通路–靶点网络。采用AutoDockTools 1.5.7软件将关键活性成分和核心靶点进行分子对接,运用PyMOL对对接结果进行可视化。结果:获得恒古相关药物化合物成分106个,相关靶点946个;骨折愈合靶点2519个,疾病和药物共有靶点164个。PPI网络中有164个节点,3347条边。拓扑分析总共筛选出个82关键靶点。MCODE聚类分析总共得到6个基因簇和5个核心基因,成分–疾病靶点拓扑分析筛选出5个关键成分。GO富集总共富集到2474条生物过程,160项分子功能相关,91项细胞组成相关。KEGG通路富集总共富集到168条信号通路。分子对接结果显示,恒古的活性成分与骨折愈合的靶点基因有着很好的结合作用。结论:恒古骨伤愈合剂促进骨折愈合具有多通路、多成分、多靶点、多机制的特点。
Objective: To analyze the mechanism of Osteoking promoting fracture healing by network pharmacology and molecular docking technology. Methods: By searching TCMSP, Batman-TCM, NCBI and other databases, the main compounds, targets and disease targets of Osteoking were obtained. The selected common targets of drugs and diseases were made into Wayne diagram, and then imported into STRING database to obtain PPI network. The PPI network was imported into Cystoscape3.8.0, and the Network Analyzer tool was used for topology analysis, and MC0DE was used for cluster analysis to screen out the core genes and construct the component-disease-target network diagram. AutoDockTools1.5.7 software was used to make molecular docking between key active ingredients and core targets, and PyMOL was used to visualize the docking results. Results: 106 components and 946 related targets of Osteoking related drugs were obtained. There are 2519 targets for fracture healing, and 164 targets for diseases and drugs. There are 164 nodes and 3347 edges in PPI network. A total of 82 key targets were selected by topological analysis. A total of 6 gene clusters and 5 core genes were obtained by MCODE cluster analysis, and 5 key components were selected by component-disease target topology analysis. GO enriched a total of 2474 biological processes, 160 related to molecular functions and 91 related to cell composition. KEGG pathway is enriched to a total of 168 signal pathways. The results of molecular docking show that the core target protein has a strong binding ability with the corresponding main components, which indicates that the active components of Osteoking have a good binding effect with the target genes of fracture healing. Conclusion: Osteoking has the characteristics of multi-pathway, multi-component, multi-target and multi-mechanism in promoting fracture healing.
[1] | Wang, S., Qiu, J., Guo, A., Ren, R., He, W., Liu, S., et al. (2020) Nanoscale Perfluorocarbon Expediates Bone Fracture Healing through Selectively Activating Osteoblastic Differentiation and Functions. Journal of Nanobiotechnology, 18, Article No. 84. https://doi.org/10.1186/s12951-020-00641-2 |
[2] | Baker, C.E., Moore-Lotridge, S.N., Hysong, A.A., Posey, S.L., Robinette, J.P., Blum, D.M., et al. (2018) Bone Fracture Acute Phase Response—A Unifying Theory of Fracture Repair: Clinical and Scientific Implications. Clinical Reviews in Bone and Mineral Metabolism, 16, 142-158. https://doi.org/10.1007/s12018-018-9256-x |
[3] | Liu, W., Li, L., Rong, Y., Qian, D., Chen, J., Zhou, Z., et al. (2020) Hypoxic Mesenchymal Stem Cell-Derived Exosomes Promote Bone Fracture Healing by the Transfer of miR-126. Acta Biomaterialia, 103, 196-212. https://doi.org/10.1016/j.actbio.2019.12.020 |
[4] | Hou, Y., Lin, W., Li, Y., Sun, Y., Liu, Y., Chen, C., et al. (2021) De-Osteogenic-Differentiated Mesenchymal Stem Cells Accelerate Fracture Healing by miR-92b. Journal of Orthopaedic Translation, 27, 25-32. https://doi.org/10.1016/j.jot.2020.10.009 |
[5] | Xu, B., Chen, L. and Lee, J.H. (2020) Smoking and Alcohol Drinking and Risk of Non-Union or Delayed Union after Fractures: A Protocol for Systematic Review and Dose-Response Meta-Analysis. Medicine, 99, e18744. https://doi.org/10.1097/md.0000000000018744 |
[6] | Chen, S., Chang, S., Tuladhar, R., Wei, Z., Xiong, W., Hu, S., et al. (2020) A New Fluoroscopic View for Evaluation of Anteromedial Cortex Reduction Quality during Cephalomedullary Nailing for Intertrochanteric Femur Fractures: The 30˚ Oblique Tangential Projection. BMC Musculoskeletal Disorders, 21, Article No. 719. https://doi.org/10.1186/s12891-020-03668-6 |
[7] | Liu, P., Jin, D., Zhang, C. and Gao, Y. (2020) Revision Surgery Due to Failed Internal Fixation of Intertrochanteric Femoral Fracture: Current State-of-the-Art. BMC Musculoskeletal Disorders, 21, Article No. 573. https://doi.org/10.1186/s12891-020-03593-8 |
[8] | 张慧杰, 王小琦, 孙岩, 等. 恒古骨伤愈合剂初步分离及其促骨形成活性的评价[J]. 中华中医药杂志, 2018, 33(4): 1512-1515. |
[9] | Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., et al. (2014) TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. Journal of Cheminformatics, 6, Article No. 13. https://doi.org/10.1186/1758-2946-6-13 |
[10] | Liu, Z., Guo, F., Wang, Y., Li, C., Zhang, X., Li, H., et al. (2016) BATMAN-TCM: A Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine. Scientific Reports, 6, Article No. 21146. https://doi.org/10.1038/srep21146 |
[11] | The UniProt Consortium (2018) UniProt: A Worldwide Hub of Protein Knowledge. Nucleic Acids Research, 47, D506-D515. https://doi.org/10.1093/nar/gky1049 |
[12] | Safran, M., Dalah, I., Alexander, J., Rosen, N., Iny Stein, T., Shmoish, M., et al. (2010) Genecards Version 3: The Human Gene Integrator. Database, 2010, baq020. https://doi.org/10.1093/database/baq020 |
[13] | NCBI Resource Coordinators (2018) Database Resources of the National Center for Biotechnology Information. Nucleic Acids Research, 46, D8-D13. |
[14] | Amberger, J.S., Bocchini, C.A., Schiettecatte, F., Scott, A.F. and Hamosh, A. (2014) OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an Online Catalog of Human Genes and Genetic Disorders. Nucleic Acids Research, 43, D789-D798. https://doi.org/10.1093/nar/gku1205 |
[15] | Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al. (2018) STRING V11: Protein-Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Research, 47, D607-D613. https://doi.org/10.1093/nar/gky1131 |
[16] | Doncheva, N.T., Morris, J.H., Gorodkin, J. and Jensen, L.J. (2018) Cytoscape Stringapp: Network Analysis and Visualization of Proteomics Data. Journal of Proteome Research, 18, 623-632. https://doi.org/10.1021/acs.jproteome.8b00702 |
[17] | Sun, C., Yuan, Q., Wu, D., Meng, X. and Wang, B. (2017) Identification of Core Genes and Outcome in Gastric Cancer Using Bioinformatics Analysis. Oncotarget, 8, 70271-70280. https://doi.org/10.18632/oncotarget.20082 |
[18] | Sontich, J.K., Zalavras, C.G. and Marcus, R.E. (2021) Secrets of Success in the Management of Lower Extremity Non Unions. Instructional Course Lectures, 70, 163-180. |
[19] | Bauwens, P., Malatray, M., Fournier, G., Rongieras, F. and Bertani, A. (2021) Risk Factors for Complications after Primary Intramedullary Nailing to Treat Tibial Shaft Fractures: A Cohort Study of 184 Consecutive Patients. Orthopaedics & Traumatology: Surgery & Research, 107, Article ID: 102877. https://doi.org/10.1016/j.otsr.2021.102877 |
[20] | Whiting, P.S., Galat, D.D., Zirkle, L.G., Shaw, M.K. and Galat, J.D. (2019) Risk Factors for Infection after Intramedullary Nailing of Open Tibial Shaft Fractures in Low-and Middle-Income Countries. Journal of Orthopaedic Trauma, 33, e234-e239. https://doi.org/10.1097/bot.0000000000001441 |
[21] | Ekegren, C.L., Edwards, E.R., De Steiger, R. and Gabbe, B.J. (2018) Incidence, Costs and Predictors of Non-Union, Delayed Union and Mal-Union Following Long Bone Fracture. International Journal of Environmental Research and Public Health, 15, Article No. 2845. https://doi.org/10.3390/ijerph15122845 |
[22] | Kizkapan, T.B. (2021) Reliability of Radiographic Union Scale in Tibial Fractures and Modified Radiographic Union Scale in Tibial Fractures Scores in the Evaluation of Pediatric Forearm Fracture Union. Joint Diseases and Related Surgery, 32, 185-191. https://doi.org/10.5606/ehc.2021.78465 |
[23] | 张学军, 王宸. 胫骨骨折的挑战及现状[J]. 中国骨伤, 2021, 34(5): 391-393. |
[24] | Gao, Y., Xiao, F., Wang, C., Wang, C., Cui, P., Zhang, X., et al. (2018) Long Noncoding RNA MALAT1 Promotes Osterix Expression to Regulate Osteogenic Differentiation by Targeting miRNA‐143 in Human Bone Marrow‐Derived Mesenchymal Stem Cells. Journal of Cellular Biochemistry, 119, 6986-6996. https://doi.org/10.1002/jcb.26907 |
[25] | Tang, Y., Mo, Y., Xin, D., Xiong, Z., Zeng, L., Luo, G., et al. (2021) Regulation of Osteoblast Autophagy Based on PI3K/AKT/mTOR Signaling Pathway Study on the Effect of β-Ecdysterone on Fracture Healing. Journal of Orthopaedic Surgery and Research, 16, Article No. 719. https://doi.org/10.1186/s13018-021-02862-z |
[26] | Zhang, Z., Hu, P., Wang, Z., Qiu, X. and Chen, Y. (2020) BDNF Promoted Osteoblast Migration and Fracture Healing by Up‐Regulating Integrin β1 via TrkB‐Mediated ERK1/2 and AKT Signalling. Journal of Cellular and Molecular Medicine, 24, 10792-10802. https://doi.org/10.1111/jcmm.15704 |
[27] | Coates, B.A., McKenzie, J.A., Yoneda, S. and Silva, M.J. (2021) Interleukin-6 (IL-6) Deficiency Enhances Intramembranous Osteogenesis Following Stress Fracture in Mice. Bone, 143, Article ID: 115737. https://doi.org/10.1016/j.bone.2020.115737 |
[28] | 黄媛, 徐艳, 易学良, 等. 川续断皂苷Ⅵ通过JNK信号通路促进骨髓间充质干细胞成骨分化[J]. 广州中医药大学学报, 2018, 35(5): 887-893. |
[29] | Fu, L., Peng, S., Wu, W., Ouyang, Y., Tan, D. and Fu, X. (2019) LncRNA HOTAIRM1 Promotes Osteogenesis by Controlling JNK/AP‐1 Signalling‐Mediated RUNX2 Expression. Journal of Cellular and Molecular Medicine, 23, 7517-7524. https://doi.org/10.1111/jcmm.14620 |
[30] | Liu, J., Zhang, J., Lin, X., Boyce, B.F., Zhang, H. and Xing, L. (2022) Age-Associated Callus Senescent Cells Produce TGF-β1 That Inhibits Fracture Healing in Aged Mice. Journal of Clinical Investigation, 132, e148073. https://doi.org/10.1172/jci148073 |
[31] | 刘志强. 槲皮素抑制破骨细胞的形成及其作用机制研究[D]: [硕士学位论文]. 合肥: 安徽医科大学, 2021。 |
[32] | Choi, E. (2007) Modulatory Effects of Luteolin on Osteoblastic Function and Inflammatory Mediators in Osteoblastic MC3T3‐E1 Cells. Cell Biology International, 31, 870-877. https://doi.org/10.1016/j.cellbi.2007.01.038 |
[33] | Wong, S.K., Chin, K. and Ima-Nirwana, S. (2019) The Osteoprotective Effects of Kaempferol: The Evidence from in Vivo and in Vitro Studies. Drug Design, Development and Therapy, 13, 3497-3514. https://doi.org/10.2147/dddt.s227738 |
[34] | 毕磊, 刘辉, 武燃. 黄芩素通过Nrf2/NF-κB/NFATc1信号通路对牙周病大鼠破骨细胞形成和牙槽骨吸收的影响[J]. 广西医学, 2021, 43(5): 600-606. |
[35] | 付方胜, 丁佳昕, 邵思远, 等. 黄芩素抑制RANKL诱导的破骨细胞分化和功能[J]. 锦州医科大学学报, 2019, 40(2): 18-20+118-119. |
[36] | Wautier, M., Guillausseau, P. and Wautier, J. (2017) Activation of the Receptor for Advanced Glycation End Products and Consequences on Health. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 11, 305-309. https://doi.org/10.1016/j.dsx.2016.09.009 |
[37] | Zhu, S., Zhuang, J., Wu, Q., Liu, Z., Liao, C., Luo, S., et al. (2018) Advanced Oxidation Protein Products Induce Pre‐Osteoblast Apoptosis through a Nicotinamide Adenine Dinucleotide Phosphate Oxidase‐Dependent, Mitogen‐Activated Protein Kinases‐Mediated Intrinsic Apoptosis Pathway. Aging Cell, 17, e12764. https://doi.org/10.1111/acel.12764 |
[38] | Asadipooya, K. and Uy, E.M. (2019) Advanced Glycation End Products (Ages), Receptor for Ages, Diabetes, and Bone: Review of the Literature. Journal of the Endocrine Society, 3, 1799-1818. https://doi.org/10.1210/js.2019-00160 |