全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高尿酸血症影响肾功能作用机制的研究进展
Research Progress on the Mechanism of Hyperuricemia Affecting Renal Function

DOI: 10.12677/acm.2025.152339, PP. 238-247

Keywords: 高尿酸血症,肾损伤,作用机制,信号通路,治疗策略
Hyperuricemia
, Kidney Injury, Mechanism of Action, Signaling Pathway, Therapeutic Strategy

Full-Text   Cite this paper   Add to My Lib

Abstract:

人体血液中尿酸浓度过高会形成尿酸盐结晶(monosodium urate, MSU),MSU在肾小管中沉积,导致肾间质和肾小管受损,引起痛风性肾病。此外,高尿酸可引起肾脏血流动力学改变、肾脏炎症反应和氧化应激等。多个信号通路参与了肾损伤过程,如:MAPK、Nrf2/ARE、NF-κB、PPAR等。高尿酸肾损伤可通过健康的生活方式预防,同时也需要规范化的药物治疗,但临床上降尿酸药物均存在一定的副作用,开发低毒高效的降尿酸药物具有重要的临床意义。本文综述了血尿酸水平升高引起肾损伤的机制,高尿酸血症的预防和治疗措施,为降尿酸保护肾脏的药物开发提供参考。
High uric acid concentration in human blood will form urate crystals (MSU), and MSU is deposited in renal tubules, leading to damage of renal interstitium and tubules and causing gouty nephropathy. In addition, high uric acid can cause alterations in renal hemodynamics as well as renal inflammatory response and oxidative stress. Signaling pathways associated with kidney injury include MAPK, Nrf2/ARE, NF-κB and PPAR. Hyperuric acid kidney injury can be prevented by a healthy lifestyle and also requires standardized drug therapy. However, all clinical uric acid-lowering drugs have certain side effects, and the development of safer and more effective uric acid-lowering drugs is urgent. This paper reviews the mechanism of kidney injury caused by elevated blood uric acid level, the prevention and treatment measures of hyperuricemia, and provides reference for the development of uric acid-lowering drugs to protect the kidneys.

References

[1]  中华医学会内分泌学分会. 高尿酸血症和痛风治疗的中国专家共识[J]. 中华内分泌代谢杂志, 2013, 29(11): 913-920.
[2]  So, A. and Thorens, B. (2010) Uric Acid Transport and Disease. Journal of Clinical Investigation, 120, 1791-1799.
https://doi.org/10.1172/jci42344
[3]  Kimura, Y., Tsukui, D. and Kono, H. (2021) Uric Acid in Inflammation and the Pathogenesis of Atherosclerosis. International Journal of Molecular Sciences, 22, Article 12394.
https://doi.org/10.3390/ijms222212394
[4]  Sanchez-Lozada, L.G., Rodriguez-Iturbe, B., Kelley, E.E., Nakagawa, T., Madero, M., Feig, D.I., et al. (2020) Uric Acid and Hypertension: An Update with Recommendations. American Journal of Hypertension, 33, 583-594.
https://doi.org/10.1093/ajh/hpaa044
[5]  Preda, A., Montecucco, F., Carbone, F., Camici, G.G., Lüscher, T.F., Kraler, S., et al. (2024) SGLT2 Inhibitors: From Glucose-Lowering to Cardiovascular Benefits. Cardiovascular Research, 120, 443-460.
https://doi.org/10.1093/cvr/cvae047
[6]  Neogi, T., George, J., Rekhraj, S., Struthers, A.D., Choi, H. and Terkeltaub, R.A. (2012) Are Either or Both Hyperuricemia and Xanthine Oxidase Directly Toxic to the Vasculature? A Critical Appraisal. Arthritis & Rheumatism, 64, 327-338.
https://doi.org/10.1002/art.33369
[7]  Yanai, H., Adachi, H., Hakoshima, M. and Katsuyama, H. (2021) Molecular Biological and Clinical Understanding of the Pathophysiology and Treatments of Hyperuricemia and Its Association with Metabolic Syndrome, Cardiovascular Diseases and Chronic Kidney Disease. International Journal of Molecular Sciences, 22, Article 9221.
https://doi.org/10.3390/ijms22179221
[8]  Wen, S., Arakawa, H. and Tamai, I. (2024) Uric Acid in Health and Disease: From Physiological Functions to Pathogenic Mechanisms. Pharmacology & Therapeutics, 256, Article 108615.
https://doi.org/10.1016/j.pharmthera.2024.108615
[9]  Vargas-Santos, A.B. and Neogi, T. (2017) Management of Gout and Hyperuricemia in CKD. American Journal of Kidney Diseases, 70, 422-439.
https://doi.org/10.1053/j.ajkd.2017.01.055
[10]  Fathallah-Shaykh, S.A. and Cramer, M.T. (2013) Uric Acid and the Kidney. Pediatric Nephrology, 29, 999-1008.
https://doi.org/10.1007/s00467-013-2549-x
[11]  Andrade Sierra, J. and Flores Fonseca, M.M. (2018) Renal Handling of Uric Acid. In: Treviño-Becerra, A. and Iseki, K., Eds., Contributions to Nephrology, S. Karger AG, 1-7.
https://doi.org/10.1159/000484271
[12]  Oğuz, N., Kırça, M., Çetin, A. and Yeşilkaya, A. (2017) Effect of Uric Acid on Inflammatory COX-2 and ROS Pathways in Vascular Smooth Muscle Cells. Journal of Receptors and Signal Transduction, 37, 500-505.
https://doi.org/10.1080/10799893.2017.1360350
[13]  Singh, Y., Samuel, V.P., Dahiya, S., Gupta, G., Gillhotra, R., Mishra, A., et al. (2019) Combinational Effect of Angiotensin Receptor Blocker and Folic Acid Therapy on Uric Acid and Creatinine Level in Hyperhomocysteinemia‐Associated Hypertension. Biotechnology and Applied Biochemistry, 66, 715-719.
https://doi.org/10.1002/bab.1799
[14]  Johnson, R.J., Nakagawa, T., Jalal, D., Sanchez-Lozada, L.G., Kang, D.-H. and Ritz, E. (2013) Uric Acid and Chronic Kidney Disease: Which Is Chasing Which? Nephrology Dialysis Transplantation, 28, 2221-2228.
https://doi.org/10.1093/ndt/gft029
[15]  Wu, M., Ma, Y., Chen, X., Liang, N., Qu, S. and Chen, H. (2021) Hyperuricemia Causes Kidney Damage by Promoting Autophagy and NLRP3-Mediated Inflammation in Rats with Urate Oxidase Deficiency. Disease Models & Mechanisms, 14, dmm048041.
https://doi.org/10.1242/dmm.048041
[16]  Ejaz, A.A., Mu, W., Kang, D., Roncal, C., Sautin, Y.Y., Henderson, G., et al. (2007) Could Uric Acid Have a Role in Acute Renal Failure? Clinical Journal of the American Society of Nephrology, 2, 16-21.
https://doi.org/10.2215/cjn.00350106
[17]  Sun, Y., Ge, X., Li, X., He, J., Wei, X., Du, J., et al. (2020) High-Fat Diet Promotes Renal Injury by Inducing Oxidative Stress and Mitochondrial Dysfunction. Cell Death & Disease, 11, Article No. 914.
https://doi.org/10.1038/s41419-020-03122-4
[18]  Wang, J., Tsai, S., Tsai, H., Lin, S. and Huang, P. (2023) Hyperuricemia Exacerbates Abdominal Aortic Aneurysm Formation through the URAT1/ERK/MMP-9 Signaling Pathway. BMC Cardiovascular Disorders, 23, Article No. 55.
https://doi.org/10.1186/s12872-022-03012-x
[19]  Liu, C., Sun, Y., Sun, J., Ma, J. and Cheng, C. (2012) Protective Role of Quercetin against Lead-Induced Inflammatory Response in Rat Kidney through the ROS-Mediated MAPKs and NF-κB Pathway. Biochimica et Biophysica Acta (BBA)-General Subjects, 1820, 1693-1703.
https://doi.org/10.1016/j.bbagen.2012.06.011
[20]  Azouz, A.A., Omar, H.A., Hersi, F., Ali, F.E.M. and Hussein Elkelawy, A.M.M. (2022) Impact of the ACE2 Activator Xanthenone on Tacrolimus Nephrotoxicity: Modulation of Uric Acid/ERK/p38 MAPK and Nrf2/SOD3/GCLC Signaling Pathways. Life Sciences, 288, Article 120154.
https://doi.org/10.1016/j.lfs.2021.120154
[21]  Shin, J.N., Rao, L., Sha, Y., Abdel Fattah, E., Hyser, J. and Eissa, N.T. (2021) P38 MAPK Activity Is Required to Prevent Hyperactivation of NLRP3 Inflammasome. The Journal of Immunology, 207, 661-670.
https://doi.org/10.4049/jimmunol.2000416
[22]  李明, 王秋婷, 陈山, 石慧芳. p38 MAPK抑制剂通过抑制NLRP3途径介导的细胞焦亡对小鼠慢性阻塞性肺疾病损伤的改善作用[J]. 吉林大学学报(医学版), 2022, 48(3): 744-754.
[23]  Su, W., Zhang, Y., Chen, Y., Gong, H., Lian, Y., Peng, W., et al. (2017) NLRP3 Gene Knockout Blocks NF-κB and MAPK Signaling Pathway in CUMS-Induced Depression Mouse Model. Behavioural Brain Research, 322, 1-8.
https://doi.org/10.1016/j.bbr.2017.01.018
[24]  王珍凤, 刘广超, 张海龙. 可溶性的高尿酸激活NLRP3炎症小体诱导大鼠肾小管上皮细胞损伤及机制研究[C]//第十二届全国免疫学学术大会论文集. 2017: 128-129.
[25]  Cheng, X., Peuckert, C. and Wölfl, S. (2017) Essential Role of Mitochondrial Stat3 in p38MAPK Mediated Apoptosis under Oxidative Stress. Scientific Reports, 7, Article No. 15388.
https://doi.org/10.1038/s41598-017-15342-4
[26]  Ahn, J., Won, M., Choi, J., Kim, Y.S., Jung, C., Im, D., et al. (2013) Reactive Oxygen Species-Mediated Activation of the AKT/ASK1/p38 Signaling Cascade and p21cip1 Downregulation Are Required for Shikonin-Induced Apoptosis. Apoptosis, 18, 870-881.
https://doi.org/10.1007/s10495-013-0835-5
[27]  Li, R., Guo, Y., Zhang, Y., Zhang, X., Zhu, L. and Yan, T. (2019) Salidroside Ameliorates Renal Interstitial Fibrosis by Inhibiting the TLR4/NF-κB and MAPK Signaling Pathways. International Journal of Molecular Sciences, 20, Article 1103.
https://doi.org/10.3390/ijms20051103
[28]  Wang, Z., Chen, Z., Li, B., Zhang, B., Du, Y., Liu, Y., et al. (2020) Curcumin Attenuates Renal Interstitial Fibrosis of Obstructive Nephropathy by Suppressing Epithelial-Mesenchymal Transition through Inhibition of the TLR4/NF-κB and PI3K/AKT Signalling Pathways. Pharmaceutical Biology, 58, 828-837.
https://doi.org/10.1080/13880209.2020.1809462
[29]  Liu, B., Ding, F., Hu, D., Zhou, Y., Long, C., Shen, L., et al. (2018) Human Umbilical Cord Mesenchymal Stem Cell Conditioned Medium Attenuates Renal Fibrosis by Reducing Inflammation and Epithelial-to-Mesenchymal Transition via the TLR4/NF-κB Signaling Pathway in vivo and in vitro. Stem Cell Research & Therapy, 9, Article No. 7.
https://doi.org/10.1186/s13287-017-0760-6
[30]  Zhang, Y., Wang, S., Dai, X., Liu, T., Liu, Y., Shi, H., et al. (2023) Simiao San Alleviates Hyperuricemia and Kidney Inflammation by Inhibiting NLRP3 Inflammasome and JAK2/STAT3 Signaling in Hyperuricemia Mice. Journal of Ethnopharmacology, 312, Article 116530.
https://doi.org/10.1016/j.jep.2023.116530
[31]  Shen, L., Dong, Y., Li, M., Zhou, Z., Zhang, J., Liu, Y., et al. (2022) The Relationship between Leukocyte Level and Hypertension in Elderly Patients with Hyperuricemia. Medicine, 101, e32327.
https://doi.org/10.1097/md.0000000000032327
[32]  Xu, R., Ma, L., Chen, T. and Wang, J. (2022) Sophorolipid Suppresses Lps-Induced Inflammation in RAW264.7 Cells through the NF-κB Signaling Pathway. Molecules, 27, Article 5037.
https://doi.org/10.3390/molecules27155037
[33]  Park, M.Y., Ha, S.E., Kim, H.H., Bhosale, P.B., Abusaliya, A., Jeong, S.H., et al. (2022) Scutellarein Inhibits LPS-Induced Inflammation through NF-κB/MAPKs Signaling Pathway in RAW264.7 Cells. Molecules, 27, Article 3782.
https://doi.org/10.3390/molecules27123782
[34]  Morgan, M.J. and Liu, Z. (2010) Crosstalk of Reactive Oxygen Species and NF-κB Signaling. Cell Research, 21, 103-115.
https://doi.org/10.1038/cr.2010.178
[35]  Jarosz, M., Olbert, M., Wyszogrodzka, G., Młyniec, K. and Librowski, T. (2017) Antioxidant and Anti-Inflammatory Effects of Zinc. Zinc-Dependent NF-κB Signaling. Inflammopharmacology, 25, 11-24.
https://doi.org/10.1007/s10787-017-0309-4
[36]  Zhang, B., Chen, Z., Jiang, Z., Huang, S., Liu, X. and Wang, L. (2023) Nephroprotective Effects of Cardamonin on Renal Ischemia Reperfusion Injury/UUO-Induced Renal Fibrosis. Journal of Agricultural and Food Chemistry, 71, 13284-13303.
https://doi.org/10.1021/acs.jafc.3c01880
[37]  Wang, M., Zhang, F., Zhou, J., Gong, K., Chen, S., Zhu, X., et al. (2023) Glabridin Ameliorates Alcohol-Caused Liver Damage by Reducing Oxidative Stress and Inflammation via P38 MAPK/Nrf2/NF-κB Pathway. Nutrients, 15, Article 2157.
https://doi.org/10.3390/nu15092157
[38]  Ding, B., Lin, C., Liu, Q., He, Y., Ruganzu, J.B., Jin, H., et al. (2020) Tanshinone IIA Attenuates Neuroinflammation via Inhibiting Rage/NF-κB Signaling Pathway in vivo and in vitro. Journal of Neuroinflammation, 17, Article No. 302.
https://doi.org/10.1186/s12974-020-01981-4
[39]  Rojo de la Vega, M., Chapman, E. and Zhang, D.D. (2018) NRF2 and the Hallmarks of Cancer. Cancer Cell, 34, 21-43.
https://doi.org/10.1016/j.ccell.2018.03.022
[40]  Ma, Q. (2013) Role of Nrf2 in Oxidative Stress and Toxicity. Annual Review of Pharmacology and Toxicology, 53, 401-426.
https://doi.org/10.1146/annurev-pharmtox-011112-140320
[41]  Galy, B., Conrad, M. and Muckenthaler, M. (2023) Mechanisms Controlling Cellular and Systemic Iron Homeostasis. Nature Reviews Molecular Cell Biology, 25, 133-155.
https://doi.org/10.1038/s41580-023-00648-1
[42]  Vomhof-DeKrey, E.E. and Picklo, M.J. (2012) The Nrf2-Antioxidant Response Element Pathway: A Target for Regulating Energy Metabolism. The Journal of Nutritional Biochemistry, 23, 1201-1206.
https://doi.org/10.1016/j.jnutbio.2012.03.005
[43]  Wang, R., Halimulati, M., Huang, X., Ma, Y., Li, L. and Zhang, Z. (2023) Sulforaphane-Driven Reprogramming of Gut Microbiome and Metabolome Ameliorates the Progression of Hyperuricemia. Journal of Advanced Research, 52, 19-28.
https://doi.org/10.1016/j.jare.2022.11.003
[44]  Yu, W., Liu, W., Xie, D., Wang, Q., Xu, C., Zhao, H., et al. (2022) High Level of Uric Acid Promotes Atherosclerosis by Targeting Nrf2-Mediated Autophagy Dysfunction and Ferroptosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 9304383.
https://doi.org/10.1155/2022/9304383
[45]  Chen, X., Xie, L. and Wu, W. (2023) Simvastatin Reduces High Uric Acid-Induced Oxidative Stress and Inflammatory Response in Vascular Endothelial Cells via Nuclear Factor E2-Related Factor 2 (Nrf2) Signaling. Iranian Journal of Basic Medical Sciences, 26, 927-933.
[46]  Zhang, Q., Liu, J., Duan, H., Li, R., Peng, W. and Wu, C. (2021) Activation of Nrf2/HO-1 Signaling: An Important Molecular Mechanism of Herbal Medicine in the Treatment of Atherosclerosis via the Protection of Vascular Endothelial Cells from Oxidative Stress. Journal of Advanced Research, 34, 43-63.
https://doi.org/10.1016/j.jare.2021.06.023
[47]  Ren, J., Su, D., Li, L., Cai, H., Zhang, M., Zhai, J., et al. (2020) Anti-inflammatory Effects of Aureusidin in LPS-Stimulated RAW264.7 Macrophages via Suppressing NF-κB and Activating ROS-and MAPKs-Dependent Nrf2/HO-1 Signaling Pathways. Toxicology and Applied Pharmacology, 387, Article 114846.
https://doi.org/10.1016/j.taap.2019.114846
[48]  邵孟佼. Nrf2/ARE信号通路对高尿酸血症促进慢性肾脏病的保护作用及其机制[D]: [硕士学位论文]. 广州: 南方医科大学, 2018.
[49]  Christofides, A., Konstantinidou, E., Jani, C. and Boussiotis, V.A. (2021) The Role of Peroxisome Proliferator-Activated Receptors (PPAR) in Immune Responses. Metabolism, 114, Article 154338.
https://doi.org/10.1016/j.metabol.2020.154338
[50]  Seminotti, B., Grings, M., Glänzel, N.M., Vockley, J. and Leipnitz, G. (2023) Peroxisome Proliferator-Activated Receptor (PPAR) Agonists as a Potential Therapy for Inherited Metabolic Disorders. Biochemical Pharmacology, 209, Article 115433.
https://doi.org/10.1016/j.bcp.2023.115433
[51]  Touyz, R.M. and Schiffrin, E.L. (2006) Peroxisome Proliferator-Activated Receptors in Vascular Biology-Molecular Mechanisms and Clinical Implications. Vascular Pharmacology, 45, 19-28.
https://doi.org/10.1016/j.vph.2005.11.014
[52]  Marion-Letellier, R., Savoye, G. and Ghosh, S. (2016) Fatty Acids, Eicosanoids and PPAR Gamma. European Journal of Pharmacology, 785, 44-49.
https://doi.org/10.1016/j.ejphar.2015.11.004
[53]  Korbecki, J., Bobiński, R. and Dutka, M. (2019) Self-Regulation of the Inflammatory Response by Peroxisome Proliferator-Activated Receptors. Inflammation Research, 68, 443-458.
https://doi.org/10.1007/s00011-019-01231-1
[54]  Sheng, W., Wang, Q., Qin, H., Cao, S., Wei, Y., Weng, J., et al. (2023) Osteoarthritis: Role of Peroxisome Proliferator-Activated Receptors. International Journal of Molecular Sciences, 24, Article 13137.
https://doi.org/10.3390/ijms241713137
[55]  Mao, Z., Feng, M., Li, Z., Zhou, M., Xu, L., Pan, K., et al. (2020) ETV5 Regulates Hepatic Fatty Acid Metabolism through PPAR Signaling Pathway. Diabetes, 70, 214-226.
https://doi.org/10.2337/db20-0619
[56]  Liu, T., Wang, L., Ji, L., Mu, L., Wang, K., Xu, G., et al. (2024) Plantaginis Semen Ameliorates Hyperuricemia Induced by Potassium Oxonate. International Journal of Molecular Sciences, 25, Article 8548.
https://doi.org/10.3390/ijms25158548
[57]  Wang, X., Deng, J., Xiong, C., Chen, H., Zhou, Q., Xia, Y., et al. (2020) treatment with a PPAR-γ Agonist Protects against Hyperuricemic Nephropathy in a Rat Model. Drug Design, Development and Therapy, 14, 2221-2233.
https://doi.org/10.2147/dddt.s247091
[58]  Du, P., Chen, M., Deng, C. and Zhu, C. (2021) MicroRNA-199a Downregulation Alleviates Hyperuricemic Nephropathy via the PPARγ/β-Catenin Axis. Journal of Receptors and Signal Transduction, 42, 373-381.
https://doi.org/10.1080/10799893.2021.1967392
[59]  Zhou, X., Zhang, B., Zhao, X., Zhang, P., Guo, J., Zhuang, Y., et al. (2023) Coffee Leaf Tea Extracts Improve Hyperuricemia Nephropathy and Its Associated Negative Effect in Gut Microbiota and Amino Acid Metabolism in Rats. Journal of Agricultural and Food Chemistry, 71, 17775-17787.
https://doi.org/10.1021/acs.jafc.3c02797
[60]  Pan, L., Han, P., Ma, S., Peng, R., Wang, C., Kong, W., et al. (2020) Abnormal Metabolism of Gut Microbiota Reveals the Possible Molecular Mechanism of Nephropathy Induced by Hyperuricemia. Acta Pharmaceutica Sinica B, 10, 249-261.
https://doi.org/10.1016/j.apsb.2019.10.007
[61]  Ciesielska, A., Matyjek, M. and Kwiatkowska, K. (2020) TLR4 and CD14 Trafficking and Its Influence on LPS-Induced Pro-Inflammatory Signaling. Cellular and Molecular Life Sciences, 78, 1233-1261.
https://doi.org/10.1007/s00018-020-03656-y
[62]  Conger, J.D. (1990) Acute Uric Acid Nephropathy. Medical Clinics of North America, 74, 859-871.
https://doi.org/10.1016/s0025-7125(16)30522-3
[63]  中华人民共和国国家卫生健康委员会. 成人高尿酸血症与痛风食养指南[J]. 全科医学临床与教育, 2024, 22(2): 100-102.
[64]  孙泽锐, 王宣军, 盛军. 高尿酸血症研究进展[J]. 云南民族大学学报(自然科学版), 2021, 30(2): 135-142, 156.
[65]  Hainer, B.L., Matheson, E. and Wilkes, R.T. (2014) Diagnosis, Treatment, and Prevention of Gout. American Family Physician, 90, 831-836.
[66]  Ferreira, J.P., Zannad, F., Kiernan, M.S. and Konstam, M.A. (2023) High-versus Low-Dose Losartan and Uric Acid: An Analysis from HEAAL. Journal of Cardiology, 82, 57-61.
https://doi.org/10.1016/j.jjcc.2023.04.005
[67]  中华医学会内分泌学分会. 中国高尿酸血症与痛风诊疗指南(2019) [J]. 中华内分泌代谢杂志, 2020, 36(1): 1-13.
[68]  Sivera, F., Wechalekar, M.D., Andrés, M., Buchbinder, R. and Carmona, L. (2014) Interleukin-1 Inhibitors for Acute Gout. Cochrane Database of Systematic Reviews, No. 9, CD009993.
https://doi.org/10.1002/14651858.cd009993.pub2
[69]  中国民族卫生协会重症代谢疾病分会, 高尿酸血症相关疾病诊疗多学科共识专家组. 中国高尿酸血症相关疾病诊疗多学科专家共识(2023年版) [J]. 中国实用内科杂志, 2023, 43(6): 461-480.
[70]  Fritsch, P.O. and Sidoroff, A. (2000) Drug-induced Stevens-Johnson Syndrome/toxic Epidermal Necrolysis. American Journal of Clinical Dermatology, 1, 349-360.
https://doi.org/10.2165/00128071-200001060-00003
[71]  Hasegawa, A. and Abe, R. (2020) Recent Advances in Managing and Understanding Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. F1000Research, 9, Article 612.
https://doi.org/10.12688/f1000research.24748.1
[72]  White, W.B., Saag, K.G., Becker, M.A., Borer, J.S., Gorelick, P.B., Whelton, A., et al. (2018) Cardiovascular Safety of Febuxostat or Allopurinol in Patients with Gout. New England Journal of Medicine, 378, 1200-1210.
https://doi.org/10.1056/nejmoa1710895
[73]  Cuenca, J.A., Balda, J., Palacio, A., Young, L., Pillinger, M.H. and Tamariz, L. (2019) Febuxostat and Cardiovascular Events: A Systematic Review and Meta-Analysis. International Journal of Rheumatology, 2019, Article ID: 1076189.
https://doi.org/10.1155/2019/1076189
[74]  Imai, S., Nasuhara, Y., Momo, K., Oki, H., Kashiwagi, H., Sato, Y., et al. (2021) Implementation Status of Liver Function Tests for Monitoring Benzbromarone-Induced Hepatotoxicity: An Epidemiological Survey Using the Japanese Claims Database. Biological and Pharmaceutical Bulletin, 44, 1499-1505.
https://doi.org/10.1248/bpb.b21-00393
[75]  李晓倩, 纪伟, 瞿伟. 尿酸性肾病中西医研究进展[J]. 实用中医内科杂志, 2021, 35(10): 136-139.
[76]  张琳俪, 王琳, 陈以平, 张先闻. 中药治疗尿酸性肾病的研究进展[J]. 上海中医药杂志, 2024, 58(9): 96-101.
[77]  Chen, Y., Guo, Z., Chen, H., Zhang, S., Bao, Y., Xie, Z., et al. (2024) Salinomycin, a Potent Inhibitor of XOD and URAT1, Ameliorates Hyperuricemic Nephropathy by Activating NRF2, Modulating the Gut Microbiota, and Promoting SCFA Production. Chemico-Biological Interactions, 403, Article 111220.
https://doi.org/10.1016/j.cbi.2024.111220

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133