全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

NAFLD与T2DM的相关研究
The Correlation between NAFLD and T2DM

DOI: 10.12677/acm.2025.152338, PP. 229-237

Keywords: 胆汁酸,非酒精性脂肪性肝病,2型糖尿病,法尼醇X受体,G蛋白偶联胆汁酸受体
Bile Acids
, NAFLD, T2DM, FXR, TGR5

Full-Text   Cite this paper   Add to My Lib

Abstract:

非酒精性脂肪性肝病(nonalcoholic fatty liver disease, NAFLD)主要表现在肝脏脂肪堆积和脂肪变性,其发生与肥胖、血脂异常等因素紧密相关。与此同时,2型糖尿病(T2DM)作为一种以慢性高血糖为特征的代谢性疾病,亦与胰岛素分泌及抵抗问题有关。二者互相促进,互为因果,共享相似的病理基础——糖脂代谢紊乱。胆汁酸(bile acid, BA)作为胆汁的成分之一,在肠道中扮演着脂质和脂溶性分子乳化与吸收的角色,通过FXR、TGR5、FGF19、GLP-1等途径调节糖脂代谢和能量平衡。研究发现,NAFLD和T2DM患者的胆汁酸谱发生显著变化,胆汁酸可能与NAFLD和T2DM的发病机制和发展过程密切相关。这些发现为胆汁酸成为NAFLD和T2DM的诊断、预防和治疗中的新型生物标志物提供了科学依据。此外,胆汁酸代谢的调控机制,包括胆固醇合成途径、肠道菌群的影响以及胆汁酸的肠肝循环。深入研究胆汁酸代谢与NAFLD和T2DM之间的关系,将有助于开发基于BA代谢调控的治疗策略,从而改善患者的生活质量。因此,本文就BA代谢在NAFLD合并T2DM中的作用及临床应用前景进行综述,为该合并症的诊治提供创新的理论支持和科学依据。
Nonalcoholic Fatty Liver Disease (NAFLD), characterized by hepatic lipid accumulation and steatosis, is closely associated with factors such as obesity and dyslipidemia. Concurrently, Type 2 Diabetes Mellitus (T2DM), a metabolic disorder marked by chronic hyperglycemia, is related to issues of insulin secretion and resistance. These two conditions mutually exacerbate each other, forming a causal relationship and sharing a similar pathological basis—disorders of glucose and lipid metabolism. Bile acids (BA), as a component of bile, play a crucial role in the emulsification and absorption of lipids and lipid-soluble molecules in the intestines. They regulate glucose and lipid metabolism and energy balance through pathways involving FXR, TGR5, FGF19, and GLP-1. Studies have shown that the bile acid profile in patients with NAFLD and T2DM undergoes significant changes, suggesting that bile acids may be closely related to the pathogenesis and progression of NAFLD and T2DM. These findings provide a scientific basis for bile acids to serve as novel biomarkers in the diagnosis, prevention, and treatment of NAFLD and T2DM. Moreover, the regulatory mechanisms of bile acid metabolism, including cholesterol synthesis pathways, the influence of gut microbiota, and the enterohepatic circulation of bile acids, are of great interest. In-depth research into the relationship between bile acid metabolism and NAFLD and T2DM may facilitate the development of therapeutic strategies based on the regulation of bile acid metabolism, thereby improving the quality of life for patients. Therefore, this article reviews the role of bile acid metabolism in the coexistence of nonalcoholic fatty liver disease and Type 2 diabetes mellitus, as well as its clinical application prospects, providing innovative theoretical support and a scientific for the diagnosis and treatment of this comorbidity.

References

[1]  Rinaldi, L., Pafundi, P.C., Galiero, R., Caturano, A., Morone, M.V., Silvestri, C., et al. (2021) Mechanisms of Non-Alcoholic Fatty Liver Disease in the Metabolic Syndrome. A Narrative Review. Antioxidants, 10, Article 270.
https://doi.org/10.3390/antiox10020270
[2]  Estes, C., Anstee, Q.M., Arias-Loste, M.T., Bantel, H., Bellentani, S., Caballeria, J., et al. (2018) Modeling NAFLD Disease Burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the Period 2016-2030. Journal of Hepatology, 69, 896-904.
https://doi.org/10.1016/j.jhep.2018.05.036
[3]  Wong, Y.H., Wong, S.H., Wong, X.T., Yap, Q.Y., Yip, K.Y., Wong, L.Z., et al. (2022) Genetic Associated Complications of Type 2 Diabetes Mellitus. Panminerva Medica, 64, 274-288.
https://doi.org/10.23736/s0031-0808.21.04285-3
[4]  Targher, G., Corey, K.E., Byrne, C.D. and Roden, M. (2021) The Complex Link between NAFLD and Type 2 Diabetes Mellitus—Mechanisms and Treatments. Nature Reviews Gastroenterology & Hepatology, 18, 599-612.
https://doi.org/10.1038/s41575-021-00448-y
[5]  Lee, C., Lui, D.T. and Lam, K.S. (2022) Non‐Alcoholic Fatty Liver Disease and Type 2 Diabetes: An Update. Journal of Diabetes Investigation, 13, 930-940.
https://doi.org/10.1111/jdi.13756
[6]  Chung, G.E., Cho, E.J., Yoon, J.W., Yoo, J., Chang, Y., Cho, Y., et al. (2021) Nonalcoholic Fatty Liver Disease Increases the Risk of Diabetes in Young Adults: A Nationwide Population-Based Study in Korea. Metabolism, 123, Article 154866.
https://doi.org/10.1016/j.metabol.2021.154866
[7]  Muzica, C.M., Sfarti, C., Trifan, A., Zenovia, S., Cuciureanu, T., Nastasa, R., et al. (2020) Nonalcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus: A Bidirectional Relationship. Canadian Journal of Gastroenterology and Hepatology, 2020, Article ID: 6638306.
https://doi.org/10.1155/2020/6638306
[8]  de Aguiar Vallim, T.Q., Tarling, E.J. and Edwards, P.A. (2013) Pleiotropic Roles of Bile Acids in Metabolism. Cell Metabolism, 17, 657-669.
https://doi.org/10.1016/j.cmet.2013.03.013
[9]  Yin, C., Zhong, R., Zhang, W., Liu, L., Chen, L. and Zhang, H. (2023) The Potential of Bile Acids as Biomarkers for Metabolic Disorders. International Journal of Molecular Sciences, 24, Article 12123.
https://doi.org/10.3390/ijms241512123
[10]  Liu, X. and Wang, Y. (2019) An Overview of Bile Acid Synthesis and Its Physiological and Pathological Functions. Hereditas, 41, 365-374.
[11]  Russell, D.W. (2003) The Enzymes, Regulation, and Genetics of Bile Acid Synthesis. Annual Review of Biochemistry, 72, 137-174.
https://doi.org/10.1146/annurev.biochem.72.121801.161712
[12]  Wang, S., Deng, Y., Xie, X., Ma, J., Xu, M., Zhao, X., et al. (2018) Plasma Bile Acid Changes in Type 2 Diabetes Correlated with Insulin Secretion in Two‐Step Hyperglycemic Clamp. Journal of Diabetes, 10, 874-885.
https://doi.org/10.1111/1753-0407.12771
[13]  Yang, H., Yang, T., Heng, C., Zhou, Y., Jiang, Z., Qian, X., et al. (2019) Quercetin Improves Nonalcoholic Fatty Liver by Ameliorating Inflammation, Oxidative Stress, and Lipid Metabolism in db/db Mice. Phytotherapy Research, 33, 3140-3152.
https://doi.org/10.1002/ptr.6486
[14]  Haeusler, R.A., Pratt-Hyatt, M., Welch, C.L., Klaassen, C.D. and Accili, D. (2012) Impaired Generation of 12-Hydroxylated Bile Acids Links Hepatic Insulin Signaling with Dyslipidemia. Cell Metabolism, 15, 65-74.
https://doi.org/10.1016/j.cmet.2011.11.010
[15]  Yu, Q., Jiang, Z. and Zhang, L. (2018) Bile Acid Regulation: A Novel Therapeutic Strategy in Non-Alcoholic Fatty Liver Disease. Pharmacology & Therapeutics, 190, 81-90.
https://doi.org/10.1016/j.pharmthera.2018.04.005
[16]  Bechmann, L.P., Kocabayoglu, P., Sowa, J., Sydor, S., Best, J., Schlattjan, M., et al. (2013) Free Fatty Acids Repress Small Heterodimer Partner (SHP) Activation and Adiponectin Counteracts Bile Acid-Induced Liver Injury in Superobese Patients with Nonalcoholic Steatohepatitis. Hepatology, 57, 1394-1406.
https://doi.org/10.1002/hep.26225
[17]  Kalhan, S.C., Guo, L., Edmison, J., Dasarathy, S., McCullough, A.J., Hanson, R.W., et al. (2011) Plasma Metabolomic Profile in Nonalcoholic Fatty Liver Disease. Metabolism, 60, 404-413.
https://doi.org/10.1016/j.metabol.2010.03.006
[18]  Masarone, M., Troisi, J., Aglitti, A., Torre, P., Colucci, A., Dallio, M., et al. (2021) Untargeted Metabolomics as a Diagnostic Tool in NAFLD: Discrimination of Steatosis, Steatohepatitis and Cirrhosis. Metabolomics, 17, Article No. 12.
https://doi.org/10.1007/s11306-020-01756-1
[19]  Jahnel, J., Zöhrer, E., Alisi, A., Ferrari, F., Ceccarelli, S., De Vito, R., et al. (2015) Serum Bile Acid Levels in Children with Nonalcoholic Fatty Liver Disease. Journal of Pediatric Gastroenterology and Nutrition, 61, 85-90.
https://doi.org/10.1097/mpg.0000000000000774
[20]  Maillette de Buy Wenniger, L. and Beuers, U. (2010) Bile Salts and Cholestasis. Digestive and Liver Disease, 42, 409-418.
https://doi.org/10.1016/j.dld.2010.03.015
[21]  Li, M., Cai, S. and Boyer, J.L. (2017) Mechanisms of Bile Acid Mediated Inflammation in the Liver. Molecular Aspects of Medicine, 56, 45-53.
https://doi.org/10.1016/j.mam.2017.06.001
[22]  Lee, W., Um, J., Hwang, B., Lee, Y.C., Chung, B.C. and Hong, J. (2020) Assessing the Progression of Gastric Cancer via Profiling of Histamine, Histidine, and Bile Acids in Gastric Juice Using LC-MS/MS. The Journal of Steroid Biochemistry and Molecular Biology, 197, Article 105539.
https://doi.org/10.1016/j.jsbmb.2019.105539
[23]  Lackey, D.E. and Olefsky, J.M. (2015) Regulation of Metabolism by the Innate Immune System. Nature Reviews Endocrinology, 12, 15-28.
https://doi.org/10.1038/nrendo.2015.189
[24]  Xie, G., Jiang, R., Wang, X., Liu, P., Zhao, A., Wu, Y., et al. (2021) Conjugated Secondary 12α-Hydroxylated Bile Acids Promote Liver Fibrogenesis. eBioMedicine, 66, Article 103290.
https://doi.org/10.1016/j.ebiom.2021.103290
[25]  Drzymała-Czyż, S., Dziedzic, K., Szwengiel, A., Krzyżanowska-Jankowska, P., Nowak, J.K., Nowicka, A., et al. (2022) Serum Bile Acids in Cystic Fibrosis Patients—Glycodeoxycholic Acid as a Potential Marker of Liver Disease. Digestive and Liver Disease, 54, 111-117.
https://doi.org/10.1016/j.dld.2021.06.034
[26]  Min, H., Kapoor, A., Fuchs, M., Mirshahi, F., Zhou, H., Maher, J., et al. (2012) Increased Hepatic Synthesis and Dysregulation of Cholesterol Metabolism Is Associated with the Severity of Nonalcoholic Fatty Liver Disease. Cell Metabolism, 15, 665-674.
https://doi.org/10.1016/j.cmet.2012.04.004
[27]  Zheng, X., Chen, T., Jiang, R., Zhao, A., Wu, Q., Kuang, J., et al. (2021) Hyocholic Acid Species Improve Glucose Homeostasis through a Distinct TGR5 and FXR Signaling Mechanism. Cell Metabolism, 33, 791-803.e7.
https://doi.org/10.1016/j.cmet.2020.11.017
[28]  Zheng, X., Chen, T., Zhao, A., Ning, Z., Kuang, J., Wang, S., et al. (2021) Hyocholic Acid Species as Novel Biomarkers for Metabolic Disorders. Nature Communications, 12, Article No. 1487.
https://doi.org/10.1038/s41467-021-21744-w
[29]  Holt, J.A., Luo, G., Billin, A.N., Bisi, J., McNeill, Y.Y., Kozarsky, K.F., et al. (2003) Definition of a Novel Growth Factor-Dependent Signal Cascade for the Suppression of Bile Acid Biosynthesis. Genes & Development, 17, 1581-1591.
https://doi.org/10.1101/gad.1083503
[30]  Chávez-Talavera, O., Tailleux, A., Lefebvre, P. and Staels, B. (2017) Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology, 152, 1679-1694.E3.
https://doi.org/10.1053/j.gastro.2017.01.055
[31]  Mantovani, A. and Dalbeni, A. (2021) Treatments for NAFLD: State of Art. International Journal of Molecular Sciences, 22, Article 2350.
https://doi.org/10.3390/ijms22052350
[32]  Fiorucci, S., Zampella, A., Ricci, P., Distrutti, E. and Biagioli, M. (2022) Immunomodulatory Functions of FXR. Molecular and Cellular Endocrinology, 551, Article 111650.
https://doi.org/10.1016/j.mce.2022.111650
[33]  Han, C. (2018) Update on FXR Biology: Promising Therapeutic Target? International Journal of Molecular Sciences, 19, Article 2069.
https://doi.org/10.3390/ijms19072069
[34]  Sanyal, A.J. (2015) Use of Farnesoid X Receptor Agonists to Treat Nonalcoholic Fatty Liver Disease. Digestive Diseases, 33, 426-432.
https://doi.org/10.1159/000371698
[35]  Farr, S., Stankovic, B., Hoffman, S., Masoudpoor, H., Baker, C., Taher, J., et al. (2020) Bile Acid Treatment and FXR Agonism Lower Postprandial Lipemia in Mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 318, G682-G693.
https://doi.org/10.1152/ajpgi.00386.2018
[36]  Friedman, S.L., Neuschwander-Tetri, B.A., Rinella, M. and Sanyal, A.J. (2018) Mechanisms of NAFLD Development and Therapeutic Strategies. Nature Medicine, 24, 908-922.
https://doi.org/10.1038/s41591-018-0104-9
[37]  Neuschwander-Tetri, B.A., Loomba, R., Sanyal, A.J., Lavine, J.E., Van Natta, M.L., Abdelmalek, M.F., et al. (2015) Farnesoid X Nuclear Receptor Ligand Obeticholic Acid for Non-Cirrhotic, Non-Alcoholic Steatohepatitis (FLINT): A Multicentre, Randomised, Placebo-Controlled Trial. The Lancet, 385, 956-965.
https://doi.org/10.1016/s0140-6736(14)61933-4
[38]  Kong, B., Luyendyk, J.P., Tawfik, O. and Guo, G.L. (2009) Farnesoid X Receptor Deficiency Induces Nonalcoholic Steatohepatitis in Low-Density Lipoprotein Receptor-Knockout Mice Fed a High-Fat Diet. The Journal of Pharmacology and Experimental Therapeutics, 328, 116-122.
https://doi.org/10.1124/jpet.108.144600
[39]  Katafuchi, T. and Makishima, M. (2022) Molecular Basis of Bile Acid-FXR-FGF15/19 Signaling Axis. International Journal of Molecular Sciences, 23, Article 6046.
https://doi.org/10.3390/ijms23116046
[40]  Owen, B.M., Mangelsdorf, D.J. and Kliewer, S.A. (2015) Tissue-Specific Actions of the Metabolic Hormones FGF15/19 and FGF21. Trends in Endocrinology & Metabolism, 26, 22-29.
https://doi.org/10.1016/j.tem.2014.10.002
[41]  Kir, S., Beddow, S.A., Samuel, V.T., Miller, P., Previs, S.F., Suino-Powell, K., et al. (2011) FGF19 as a Postprandial, Insulin-Independent Activator of Hepatic Protein and Glycogen Synthesis. Science, 331, 1621-1624.
https://doi.org/10.1126/science.1198363
[42]  Potthoff, M.J., Boney-Montoya, J., Choi, M., He, T., Sunny, N.E., Satapati, S., et al. (2011) FGF15/19 Regulates Hepatic Glucose Metabolism by Inhibiting the CREB-PGC-1α Pathway. Cell Metabolism, 13, 729-738.
https://doi.org/10.1016/j.cmet.2011.03.019
[43]  Harrison, S.A., Rossi, S.J., Paredes, A.H., Trotter, J.F., Bashir, M.R., Guy, C.D., et al. (2019) NGM282 Improves Liver Fibrosis and Histology in 12 Weeks in Patients with Nonalcoholic Steatohepatitis. Hepatology, 71, 1198-1212.
https://doi.org/10.1002/hep.30590
[44]  Keitel, V., Spomer, L., Marin, J.J.G., Williamson, C., Geenes, V., Kubitz, R., et al. (2013) Effect of Maternal Cholestasis on TGR5 Expression in Human and Rat Placenta at Term. Placenta, 34, 810-816.
https://doi.org/10.1016/j.placenta.2013.06.302
[45]  Castellanos-Jankiewicz, A., Guzmán-Quevedo, O., Fénelon, V.S., Zizzari, P., Quarta, C., Bellocchio, L., et al. (2021) Hypothalamic Bile Acid-TGR5 Signaling Protects from Obesity. Cell Metabolism, 33, 1483-1492.E10.
https://doi.org/10.1016/j.cmet.2021.04.009
[46]  Parker, H., Wallis, K., le Roux, C., Wong, K., Reimann, F. and Gribble, F. (2011) Molecular Mechanisms Underlying Bile Acid‐Stimulated Glucagon‐Like Peptide‐1 Secretion. British Journal of Pharmacology, 165, 414-423.
https://doi.org/10.1111/j.1476-5381.2011.01561.x
[47]  Kumar, D.P., Rajagopal, S., Mahavadi, S., Mirshahi, F., Grider, J.R., Murthy, K.S., et al. (2012) Activation of Transmembrane Bile Acid Receptor TGR5 Stimulates Insulin Secretion in Pancreatic Β Cells. Biochemical and Biophysical Research Communications, 427, 600-605.
https://doi.org/10.1016/j.bbrc.2012.09.104
[48]  Jonsson, I., Bojsen-Møller, K.N., Kristiansen, V.B., Veedfald, S., Wewer Albrechtsen, N.J., Clausen, T.R., et al. (2021) Effects of Manipulating Circulating Bile Acid Concentrations on Postprandial GLP-1 Secretion and Glucose Metabolism after Roux-En-Y Gastric Bypass. Frontiers in Endocrinology, 12, Article 681116.
https://doi.org/10.3389/fendo.2021.681116
[49]  Li, P., Zhu, L., Yang, X., Li, W., Sun, X., Yi, B., et al. (2018) Farnesoid X Receptor Interacts with Camp Response Element Binding Protein to Modulate Glucagon‐Like Peptide‐1 (7-36) Amide Secretion by Intestinal L Cell. Journal of Cellular Physiology, 234, 12839-12846.
https://doi.org/10.1002/jcp.27940
[50]  American Diabetes Association (2017) 8. Pharmacologic Approaches to Glycemic Treatment: standards of Medical Care in Diabetes—2018. Diabetes Care, 41, S73-S85.
https://doi.org/10.2337/dc18-s008
[51]  Raschi, E., Mazzotti, A., Poluzzi, E., De Ponti, F. and Marchesini, G. (2018) Pharmacotherapy of Type 2 Diabetes in Patients with Chronic Liver Disease: Focus on Nonalcoholic Fatty Liver Disease. Expert Opinion on Pharmacotherapy, 19, 1903-1914.
https://doi.org/10.1080/14656566.2018.1531126
[52]  Mantovani, A., Byrne, C.D., Scorletti, E., Mantzoros, C.S. and Targher, G. (2020) Efficacy and Safety of Anti-Hyperglycaemic Drugs in Patients with Non-Alcoholic Fatty Liver Disease with or without Diabetes: An Updated Systematic Review of Randomized Controlled Trials. Diabetes & Metabolism, 46, 427-441.
https://doi.org/10.1016/j.diabet.2019.12.007
[53]  Kalavalapalli, S., Bril, F., Guingab, J., Vergara, A., Garrett, T.J., Sunny, N.E., et al. (2019) Impact of Exenatide on Mitochondrial Lipid Metabolism in Mice with Nonalcoholic Steatohepatitis. Journal of Endocrinology, 241, 293-305.
https://doi.org/10.1530/joe-19-0007
[54]  Chiang, J.Y.L. and Ferrell, J.M. (2020) Bile Acid Receptors FXR and TGR5 Signaling in Fatty Liver Diseases and Therapy. American Journal of Physiology-Gastrointestinal and Liver Physiology, 318, G554-G573.
https://doi.org/10.1152/ajpgi.00223.2019
[55]  Wang, X.X., Wang, D., Luo, Y., Myakala, K., Dobrinskikh, E., Rosenberg, A.Z., et al. (2017) FXR/TGR5 Dual Agonist Prevents Progression of Nephropathy in Diabetes and Obesity. Journal of the American Society of Nephrology, 29, 118-137.
https://doi.org/10.1681/asn.2017020222

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133