全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肠道菌群在糖尿病肾病发生发展中的作用及机制
The Role and Mechanism of Gut Microbiota in the Development of Diabetic Nephropathy

DOI: 10.12677/acm.2025.152336, PP. 215-222

Keywords: 糖尿病肾病,肠道菌群,肠肾轴,肠道菌群靶向疗法
Diabetic Nephropathy
, Gut Microbiota, Gut-Kidney Axis, Gut Microbiota Targeting Therapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

糖尿病肾病(Diabetic nephropathy, DN)是糖尿病(Diabetes mellitus, DM)最常见、最严重的并发症之一。近年来,肠肾轴在DN发生发展中的作用受到了越来越多的关注。DN患者肠道菌群多样性发生改变,并通过代谢物与宿主之间相互作用,在DN发病机制及治疗中起关键作用。本综述旨在讨论肠道菌群参与DN的关键机制及靶向肠道菌群的治疗策略,以期为DN的临床治疗提供新的见解。
Diabetic nephropathy (DN) is one of the most common and severe complications of diabetes mellitus (DM). In recent years, the role of the gut-kidney axis in the pathogenesis and progression of DN has garnered increasing attention. Patients with DN exhibit altered gut microbiota diversity, which, through interactions with the host via metabolites, plays a pivotal role in the pathogenesis and treatment of DN. This review aims to discuss the key mechanisms underlying the involvement of gut microbiota in DN and therapeutic strategies targeting the gut microbiota, with the intention of providing novel insights into the clinical management of DN.

References

[1]  Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., et al. (2023) Erratum to “IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045” [Diabetes Res. Clin. Pract. 183 (2022) 109119]. Diabetes Research and Clinical Practice, 204, Article ID: 110945.
https://doi.org/10.1016/j.diabres.2023.110945
[2]  Afkarian, M., Zelnick, L.R., Hall, Y.N., Heagerty, P.J., Tuttle, K., Weiss, N.S., et al. (2016) Clinical Manifestations of Kidney Disease among US Adults with Diabetes, 1988-2014. JAMA, 316, 602-610.
https://doi.org/10.1001/jama.2016.10924
[3]  Wal, P., Tyagi, S., Pal, R.S., Yadav, A. and Jaiswal, R. (2023) A Strategic Investigation on Diabetic Nephropathy; Its Conceptual Model and Clinical Manifestations: A Review. Current Diabetes Reviews, 19, e260422204036.
https://doi.org/10.2174/1573399818666220426091238
[4]  Jiang, G., Luk, A.O.Y., Tam, C.H.T., Xie, F., Carstensen, B., Lau, E.S.H., et al. (2019) Progression of Diabetic Kidney Disease and Trajectory of Kidney Function Decline in Chinese Patients with Type 2 Diabetes. Kidney International, 95, 178-187.
https://doi.org/10.1016/j.kint.2018.08.026
[5]  D’Alessandro, V.F., Takeshita, A., Yasuma, T., Toda, M., D’Alessandro-Gabazza, C.N., Okano, Y., et al. (2022) Transforming Growth Factorβ1 Overexpression Is Associated with Insulin Resistance and Rapidly Progressive Kidney Fibrosis under Diabetic Conditions. International Journal of Molecular Sciences, 23, Article No. 14265.
https://doi.org/10.3390/ijms232214265
[6]  Ricciardi, C.A. and Gnudi, L. (2021) Kidney Disease in Diabetes: From Mechanisms to Clinical Presentation and Treatment Strategies. Metabolism, 124, Article ID: 154890.
https://doi.org/10.1016/j.metabol.2021.154890
[7]  Jha, J.C., Banal, C., Chow, B.S.M., Cooper, M.E. and Jandeleit-Dahm, K. (2016) Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxidants & Redox Signaling, 25, 657-684.
https://doi.org/10.1089/ars.2016.6664
[8]  Noecker, C. and Turnbaugh, P.J. (2024) Emerging Tools and Best Practices for Studying Gut Microbial Community Metabolism. Nature Metabolism, 6, 1225-1236.
https://doi.org/10.1038/s42255-024-01074-z
[9]  Heintz-Buschart, A. and Wilmes, P. (2018) Human Gut Microbiome: Function Matters. Trends in Microbiology, 26, 563-574.
https://doi.org/10.1016/j.tim.2017.11.002
[10]  Yang, G., Wei, J., Liu, P., Zhang, Q., Tian, Y., Hou, G., et al. (2021) Role of the Gut Microbiota in Type 2 Diabetes and Related Diseases. Metabolism, 117, Article ID: 154712.
https://doi.org/10.1016/j.metabol.2021.154712
[11]  Giordano, L., Mihaila, S.M., Eslami Amirabadi, H. and Masereeuw, R. (2021) Microphysiological Systems to Recapitulate the Gut-Kidney Axis. Trends in Biotechnology, 39, 811-823.
https://doi.org/10.1016/j.tibtech.2020.12.001
[12]  Vallianou, N.G., Kounatidis, D., Panagopoulos, F., Evangelopoulos, A., Stamatopoulos, V., Papagiorgos, A., et al. (2023) Gut Microbiota and Its Role in the Brain-Gut-Kidney Axis in Hypertension. Current Hypertension Reports, 25, 367-376.
https://doi.org/10.1007/s11906-023-01263-3
[13]  Thaiss, C.A., Levy, M., Grosheva, I., Zheng, D., Soffer, E., Blacher, E., et al. (2018) Hyperglycemia Drives Intestinal Barrier Dysfunction and Risk for Enteric Infection. Science, 359, 1376-1383.
https://doi.org/10.1126/science.aar3318
[14]  Wang, X., Yang, S., Li, S., Zhao, L., Hao, Y., Qin, J., et al. (2020) Aberrant Gut Microbiota Alters Host Metabolome and Impacts Renal Failure in Humans and Rodents. Gut, 69, 2131-2142.
https://doi.org/10.1136/gutjnl-2019-319766
[15]  Graboski, A.L. and Redinbo, M.R. (2020) Gut-Derived Protein-Bound Uremic Toxins. Toxins, 12, Article No. 590.
https://doi.org/10.3390/toxins12090590
[16]  Linh, H.T., Iwata, Y., Senda, Y., Sakai-Takemori, Y., Nakade, Y., Oshima, M., et al. (2022) Intestinal Bacterial Translocation Contributes to Diabetic Kidney Disease. Journal of the American Society of Nephrology, 33, 1105-1119.
https://doi.org/10.1681/asn.2021060843
[17]  Han, S., Chen, M., Cheng, P., Zhang, Z., Lu, Y., Xu, Y., et al. (2022) A Systematic Review and Meta-Analysis of Gut Microbiota in Diabetic Kidney Disease: Comparisons with Diabetes Mellitus, Non-Diabetic Kidney Disease, and Healthy Individuals. Frontiers in Endocrinology, 13, Article ID: 1018093.
https://doi.org/10.3389/fendo.2022.1018093
[18]  Salguero, M., AlObaide, M., Singh, R., Siepmann, T. and Vasylyeva, T. (2019) Dysbiosis of Gram-Negative Gut Microbiota and the Associated Serum Lipopolysaccharide Exacerbates Inflammation in Type 2 Diabetic Patients with Chronic Kidney Disease. Experimental and Therapeutic Medicine, 18, 3461-3469.
https://doi.org/10.3892/etm.2019.7943
[19]  Tao, S., Li, L., Li, L., Liu, Y., Ren, Q., Shi, M., et al. (2019) Understanding the Gut-Kidney Axis among Biopsy-Proven Diabetic Nephropathy, Type 2 Diabetes Mellitus and Healthy Controls: An Analysis of the Gut Microbiota Composition. Acta Diabetologica, 56, 581-592.
https://doi.org/10.1007/s00592-019-01316-7
[20]  Shang, J., Cui, W., Guo, R., Zhang, Y., Wang, P., Yu, W., et al. (2022) The Harmful Intestinal Microbial Community Accumulates during DKD Exacerbation and Microbiome-Metabolome Combined Validation in a Mouse Model. Frontiers in Endocrinology, 13, Article ID: 964389.
https://doi.org/10.3389/fendo.2022.964389
[21]  Huang, H., Luo, Y., Lu, P., Huang, C., Lin, K., Lee, M., et al. (2023) Gut Microbiota Composition Can Reflect Immune Responses of Latent Tuberculosis Infection in Patients with Poorly Controlled Diabetes. Respiratory Research, 24, Article No. 11.
https://doi.org/10.1186/s12931-023-02312-w
[22]  Tervaert, T.W.C., Mooyaart, A.L., Amann, K., Cohen, A.H., Cook, H.T., Drachenberg, C.B., et al. (2010) Pathologic Classification of Diabetic Nephropathy. Journal of the American Society of Nephrology, 21, 556-563.
https://doi.org/10.1681/asn.2010010010
[23]  Mohandes, S., Doke, T., Hu, H., Mukhi, D., Dhillon, P. and Susztak, K. (2023) Molecular Pathways That Drive Diabetic Kidney Disease. Journal of Clinical Investigation, 133, e165654.
https://doi.org/10.1172/jci165654
[24]  Lambie, M., Bonomini, M., Davies, S.J., Accili, D., Arduini, A. and Zammit, V. (2021) Insulin Resistance in Cardiovascular Disease, Uremia, and Peritoneal Dialysis. Trends in Endocrinology & Metabolism, 32, 721-730.
https://doi.org/10.1016/j.tem.2021.06.001
[25]  Takeuchi, T., Kubota, T., Nakanishi, Y., Tsugawa, H., Suda, W., Kwon, A.T., et al. (2023) Gut Microbial Carbohydrate Metabolism Contributes to Insulin Resistance. Nature, 621, 389-395.
https://doi.org/10.1038/s41586-023-06466-x
[26]  Greenhill, C. (2015) Firmicutes and Bacteroidetes Involved in Insulin Resistance by Mediating Levels of Glucagon-Like Peptide 1. Nature Reviews Endocrinology, 11, Article No. 254.
https://doi.org/10.1038/nrendo.2015.40
[27]  Sun, Y., Nie, Q., Zhang, S., He, H., Zuo, S., Chen, C., et al. (2023) Parabacteroides Distasonis Ameliorates Insulin Resistance via Activation of Intestinal Gpr109a. Nature Communications, 14, Article No. 7740.
https://doi.org/10.1038/s41467-023-43622-3
[28]  Pedersen, H.K., Gudmundsdottir, V., Nielsen, H.B., Hyotylainen, T., Nielsen, T., Jensen, B.A.H., et al. (2016) Human Gut Microbes Impact Host Serum Metabolome and Insulin Sensitivity. Nature, 535, 376-381.
https://doi.org/10.1038/nature18646
[29]  Aggarwal, H., Gautam, J., Kumari, D., Gupta, S.K., Bajpai, S., Chaturvedi, K., et al. (2024) Comparative Profiling of Gut Microbiota and Metabolome in Diet-Induced Obese and Insulin-Resistant C57BL/6J Mice. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1871, Article ID: 119643.
https://doi.org/10.1016/j.bbamcr.2023.119643
[30]  Facchin, S., Bertin, L., Bonazzi, E., Lorenzon, G., De Barba, C., Barberio, B., et al. (2024) Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life, 14, Article No. 559.
https://doi.org/10.3390/life14050559
[31]  Saad, M.J.A., Santos, A. and Prada, P.O. (2016) Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance. Physiology, 31, 283-293.
https://doi.org/10.1152/physiol.00041.2015
[32]  Guo, Y., Xie, G. and Zhang, X. (2023) Role of FXR in Renal Physiology and Kidney Diseases. International Journal of Molecular Sciences, 24, Article No. 2408.
https://doi.org/10.3390/ijms24032408
[33]  She, J., Tuerhongjiang, G., Guo, M., Liu, J., Hao, X., Guo, L., et al. (2024) Statins Aggravate Insulin Resistance through Reduced Blood Glucagon-Like Peptide-1 Levels in a Microbiota-Dependent Manner. Cell Metabolism, 36, 408-421.e5.
https://doi.org/10.1016/j.cmet.2023.12.027
[34]  Naaman, S.C. and Bakris, G.L. (2023) Diabetic Nephropathy: Update on Pillars of Therapy Slowing Progression. Diabetes Care, 46, 1574-1586.
https://doi.org/10.2337/dci23-0030
[35]  Jaworska, K., Koper, M. and Ufnal, M. (2021) Gut Microbiota and Renin-Angiotensin System: A Complex Interplay at Local and Systemic Levels. American Journal of Physiology-Gastrointestinal and Liver Physiology, 321, G355-G366.
https://doi.org/10.1152/ajpgi.00099.2021
[36]  Liu, W., Tan, Z., Geng, M., Jiang, X. and Xin, Y. (2023) Impact of the Gut Microbiota on Angiotensin Ⅱ-Related Disorders and Its Mechanisms. Biochemical Pharmacology, 214, Article ID: 115659.
https://doi.org/10.1016/j.bcp.2023.115659
[37]  Lohia, S., Valkenburg, S., Stroggilos, R., Lygirou, V., Makridakis, M., Zoidakis, J., et al. (2024) Investigation of the Human-Gut-Kidney Axis by Fecal Proteomics, Highlights Molecular Mechanisms Affected in CKD. Heliyon, 10, e32828.
https://doi.org/10.1016/j.heliyon.2024.e32828
[38]  Karbach, S.H., Schönfelder, T., Brandão, I., Wilms, E., Hörmann, N., Jäckel, S., et al. (2016) Gut Microbiota Promote Angiotensin II-Induced Arterial Hypertension and Vascular Dysfunction. Journal of the American Heart Association, 5, e003698.
https://doi.org/10.1161/jaha.116.003698
[39]  Wang, L., Zhu, Q., Lu, A., Liu, X., Zhang, L., Xu, C., et al. (2017) Sodium Butyrate Suppresses Angiotensin II-Induced Hypertension by Inhibition of Renal (Pro)renin Receptor and Intrarenal Renin-Angiotensin System. Journal of Hypertension, 35, 1899-1908.
https://doi.org/10.1097/hjh.0000000000001378
[40]  Deng, F., Zhang, L., Wu, H., Chen, Y., Yu, W., Han, R., et al. (2022) Propionate Alleviates Myocardial Ischemia-Reperfusion Injury Aggravated by Angiotensin II Dependent on Caveolin-1/Ace2 Axis through Gpr41. International Journal of Biological Sciences, 18, 858-872.
https://doi.org/10.7150/ijbs.67724
[41]  Campbell, C., Kandalgaonkar, M.R., Golonka, R.M., Yeoh, B.S., Vijay-Kumar, M. and Saha, P. (2023) Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines, 11, Article No. 294.
https://doi.org/10.3390/biomedicines11020294
[42]  Ni, Y., Zheng, L., Nan, S., Ke, L., Fu, Z. and Jin, J. (2022) Enterorenal Crosstalks in Diabetic Nephropathy and Novel Therapeutics Targeting the Gut Microbiota. Acta Biochimica et Biophysica Sinica, 54, 1406-1420.
https://doi.org/10.3724/abbs.2022140
[43]  Mosterd, C.M., Kanbay, M., van den Born, B.J.H., van Raalte, D.H. and Rampanelli, E. (2021) Intestinal Microbiota and Diabetic Kidney Diseases: The Role of Microbiota and Derived Metabolites Inmodulation of Renal Inflammation and Disease Progression. Best Practice & Research Clinical Endocrinology & Metabolism, 35, Article ID: 101484.
https://doi.org/10.1016/j.beem.2021.101484
[44]  Rysz, J., Franczyk, B., Ławiński, J., Olszewski, R., Ciałkowska-Rysz, A. and Gluba-Brzózka, A. (2021) The Impact of CKD on Uremic Toxins and Gut Microbiota. Toxins, 13, Article No. 252.
https://doi.org/10.3390/toxins13040252
[45]  Zhou, W., Wu, W., Si, Z., Liu, H., Wang, H., Jiang, H., et al. (2022) The Gut Microbe Bacteroides Fragilis Ameliorates Renal Fibrosis in Mice. Nature Communications, 13, Article No. 6081.
https://doi.org/10.1038/s41467-022-33824-6
[46]  Zhong, C., Dai, Z., Chai, L., Wu, L., Li, J., Guo, W., et al. (2021) The Change of Gut Microbiota‐Derived Short‐Chain Fatty Acids in Diabetic Kidney Disease. Journal of Clinical Laboratory Analysis, 35, e24062.
https://doi.org/10.1002/jcla.24062
[47]  Srivastava, A., Tomar, B., Sharma, D. and Rath, S.K. (2023) Mitochondrial Dysfunction and Oxidative Stress: Role in Chronic Kidney Disease. Life Sciences, 319, Article ID: 121432.
https://doi.org/10.1016/j.lfs.2023.121432
[48]  Su, S., Ma, Z., Wu, H., Xu, Z. and Yi, H. (2023) Oxidative Stress as a Culprit in Diabetic Kidney Disease. Life Sciences, 322, Article ID: 121661.
https://doi.org/10.1016/j.lfs.2023.121661
[49]  Samsu, N. (2021) Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BioMed Research International, 2021, Article ID: 1497449.
https://doi.org/10.1155/2021/1497449
[50]  Winiarska, A., Knysak, M., Nabrdalik, K., Gumprecht, J. and Stompór, T. (2021) Inflammation and Oxidative Stress in Diabetic Kidney Disease: The Targets for SGLT2 Inhibitors and GLP-1 Receptor Agonists. International Journal of Molecular Sciences, 22, Article No. 10822.
https://doi.org/10.3390/ijms221910822
[51]  Tan, Y., Wang, Y., Feng, H., Guo, Z., Li, X., Nie, X., et al. (2022) Host/Microbiota Interactions-Derived Tryptophan Metabolites Modulate Oxidative Stress and Inflammation via Aryl Hydrocarbon Receptor Signaling. Free Radical Biology and Medicine, 184, 30-41.
https://doi.org/10.1016/j.freeradbiomed.2022.03.025
[52]  Chao, C. and Chiang, C. (2015) Uremic Toxins, Oxidative Stress, and Renal Fibrosis: An Interwined Complex. Journal of Renal Nutrition, 25, 155-159.
https://doi.org/10.1053/j.jrn.2014.10.010
[53]  Porcari, S., Benech, N., Valles-Colomer, M., Segata, N., Gasbarrini, A., Cammarota, G., et al. (2023) Key Determinants of Success in Fecal Microbiota Transplantation: From Microbiome to Clinic. Cell Host & Microbe, 31, 712-733.
https://doi.org/10.1016/j.chom.2023.03.020
[54]  Yadegar, A., Bar-Yoseph, H., Monaghan, T.M., Pakpour, S., Severino, A., Kuijper, E.J., et al. (2024) Fecal Microbiota Transplantation: Current Challenges and Future Landscapes. Clinical Microbiology Reviews, 37, e0006022.
https://doi.org/10.1128/cmr.00060-22
[55]  Hu, Z.B., Lu, J., Chen, P.P., Lu, C.C., Zhang, J.X., Li, X.Q., et al. (2020) Dysbiosis of Intestinal Microbiota Mediates Tubulointerstitial Injury in Diabetic Nephropathy via the Disruption of Cholesterol Homeostasis. Theranostics, 10, 2803-2816.
https://doi.org/10.7150/thno.40571
[56]  Wang, H., Lu, Y., Yan, Y., Tian, S., Zheng, D., Leng, D., et al. (2020) Promising Treatment for Type 2 Diabetes: Fecal Microbiota Transplantation Reverses Insulin Resistance and Impaired Islets. Frontiers in Cellular and Infection Microbiology, 9, Article No. 455.
https://doi.org/10.3389/fcimb.2019.00455
[57]  Ding, D., Yong, H., You, N., Lu, W., Yang, X., Ye, X., et al. (2022) Prospective Study Reveals Host Microbial Determinants of Clinical Response to Fecal Microbiota Transplant Therapy in Type 2 Diabetes Patients. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 820367.
https://doi.org/10.3389/fcimb.2022.820367
[58]  Yang, Y., Yan, J., Li, S., Liu, M., Han, R., Wang, Y., et al. (2023) Efficacy of Fecal Microbiota Transplantation in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Endocrine, 84, 48-62.
https://doi.org/10.1007/s12020-023-03606-1
[59]  Singh, R.P., Shadan, A. and Ma, Y. (2022) Biotechnological Applications of Probiotics: A Multifarious Weapon to Disease and Metabolic Abnormality. Probiotics and Antimicrobial Proteins, 14, 1184-1210.
https://doi.org/10.1007/s12602-022-09992-8
[60]  Meng, F., Zhang, F., Meng, M., Chen, Q., Yang, Y., Wang, W., et al. (2023) Effects of the Synbiotic Composed of Mangiferin and Lactobacillus reuteri 1-12 on Type 2 Diabetes Mellitus Rats. Frontiers in Microbiology, 14, Article ID: 1158652.
https://doi.org/10.3389/fmicb.2023.1158652
[61]  Lu, Y., Yin, L., Chang, W. and Huang, J. (2010) Effect of Lactobacillus reuteri GMNL-263 Treatment on Renal Fibrosis in Diabetic Rats. Journal of Bioscience and Bioengineering, 110, 709-715.
https://doi.org/10.1016/j.jbiosc.2010.07.006
[62]  Ross, P. (2022) Expression of Concern: Metabolic and Genetic Response to Probiotics Supplementation in Patients with Diabetic Nephropathy: A Randomized, Double-Blind, Placebo-Controlled Trial. Food & Function, 13, 4229-4229.
https://doi.org/10.1039/d2fo90024f
[63]  Ma, J., Lyu, Y., Liu, X., Jia, X., Cui, F., Wu, X., et al. (2022) Engineered Probiotics. Microbial Cell Factories, 21, Article No. 72.
https://doi.org/10.1186/s12934-022-01799-0
[64]  Wang, X., Chen, W., Jin, R., Xu, X., Wei, J., Huang, H., et al. (2022) Engineered Probiotics Clostridium Butyricum‐pMTL007‐GLP‐1 Improves Blood Pressure via Producing GLP‐1 and Modulating Gut Microbiota in Spontaneous Hypertension Rat Models. Microbial Biotechnology, 16, 799-812.
https://doi.org/10.1111/1751-7915.14196
[65]  Hu, H., Luo, J., Liu, Y., Li, H., Jin, R., Li, S., et al. (2023) Improvement Effect of a Next-Generation Probiotic L. Plantarum-pMG36e-GLP-1 on Type 2 Diabetes Mellitus via the Gut-Pancreas-Liver Axis. Food & Function, 14, 3179-3195.
https://doi.org/10.1039/d3fo00044c

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133