|
细胞自噬在肾缺血再灌注损伤中的作用机制的研究进展
|
Abstract:
细胞自噬在肾缺血再灌注损伤中的作用是一个复杂且多面的过程。肾缺血再灌注损伤(IRI)是临床中较为常见的病理生理过程,它通常是由于肾脏血液供应中断后恢复血流所引起的。这种损伤与多种机制相关,包括氧化应激、钙超载、线粒体功能紊乱、自噬和凋亡等。在这些机制中,自噬起着关键作用。
The role of autophagy in renal ischemia-reperfusion injury is a complex and multifaceted process. Renal ischemia-reperfusion injury (IRI) is a common pathophysiological process in clinical practice. It is usually caused by the restoration of blood flow after the interruption of renal blood supply. This damage is associated with multiple mechanisms, including oxidative stress, calcium overload, mitochondrial dysfunction, autophagy and apoptosis. Among these mechanisms, autophagy plays a key role.
[1] | 彭显月, 梁国标. 自噬在肾缺血再灌注损伤中作用机制的研究进展[J]. 医学研究杂志, 2020, 49(7): 9-11, 16. |
[2] | Shiva, N., Sharma, N., Kulkarni, Y.A., Mulay, S.R. and Gaikwad, A.B. (2020) Renal Ischemia/Reperfusion Injury: An Insight on in vitro and in vivo Models. Life Sciences, 256, Article 117860. https://doi.org/10.1016/j.lfs.2020.117860 |
[3] | Pefanis, A., Ierino, F.L., Murphy, J.M. and Cowan, P.J. (2019) Regulated Necrosis in Kidney Ischemia-Reperfusion Injury. Kidney International, 96, 291-301. https://doi.org/10.1016/j.kint.2019.02.009 |
[4] | Decuypere, J., Ceulemans, L.J., Agostinis, P., Monbaliu, D., Naesens, M., Pirenne, J., et al. (2015) Autophagy and the Kidney: Implications for Ischemia-Reperfusion Injury and Therapy. American Journal of Kidney Diseases, 66, 699-709. https://doi.org/10.1053/j.ajkd.2015.05.021 |
[5] | 王天宇, 周江桥. 线粒体自噬在肾缺血-再灌注损伤中的作用[J]. 器官移植, 2018, 9(3): 239-241. |
[6] | Kalogeris, T., Baines, C.P., Krenz, M. and Korthuis, R.J. (2012) Cell Biology of Ischemia/reperfusion Injury. International Review of Cell and Molecular Biology, 298, 229-317. https://doi.org/10.1016/b978-0-12-394309-5.00006-7 |
[7] | 李昕, 王芷宁, 付璐, 等. 缺血-再灌注氧化损伤机制及其对不同器官功能的影响[J]. 中国比较医学杂志, 2022, 32(7): 149-154. |
[8] | 汝少国, 朱增光, 崔鹏飞. 细胞自噬与应激反应[J]. 中国海洋大学学报(自然科学版), 2022, 52(7): 1-13. |
[9] | Fu, Z., Wang, Z., Xu, L., Chen, X., Li, X., Liao, W., et al. (2020) HIF-1α-BNIP3-Mediated Mitophagy in Tubular Cells Protects against Renal Ischemia/Reperfusion Injury. Redox Biology, 36, Article 101671. https://doi.org/10.1016/j.redox.2020.101671 |
[10] | Jiang, Z., Kuo, Y. and Arkin, M.R. (2023) Autophagy Receptor-Inspired Antibody-Fusion Proteins for Targeted Intracellular Degradation. Journal of the American Chemical Society, 145, 23939-23947. https://doi.org/10.1021/jacs.3c05199 |
[11] | Wang, Z., Li, Z., Feng, D., Zu, G., Li, Y., Zhao, Y., et al. (2019) Autophagy Induction Ameliorates Inflammatory Responses in Intestinal Ischemia-Reperfusion through Inhibiting NLRP3 Inflammasome Activation. Shock, 52, 387-395. https://doi.org/10.1097/shk.0000000000001259 |
[12] | 曹真睿, 贺桂琼, 龙志敏. 自噬与NLRP3炎症小体激活间的相互作用[J]. 中国生物化学与分子生物学报, 2019, 35(6): 599-605. |
[13] | 吴艳萍, 王阳, 李雅丽, 等. 氧化应激与自噬[J]. 动物营养学报, 2016, 28(9): 2673-2680. |
[14] | 齐元麟, 陈富华, 任正肖, 等. 动脉平滑肌细胞的钙池操纵钙通道对细胞自噬的调节[J]. 中国药理学通报, 2016, 32(10): 1416-1421. |
[15] | 张文静, 崔丽艳, 张捷. 自噬与缺血再灌注损伤[J]. 检验医学, 2014, 29(2): 182-185. |
[16] | 陈林波, 马凯丽, 陈佺, 等. 线粒体自噬的分子机制[J]. 中国科学(生命科学), 2019, 49(9): 1045-1053. |
[17] | 陈华玲, 马晓鹂, 袁圣亮. 自噬与炎症的关系研究进展[J]. 山东医药, 2016, 56(23): 100-102. |
[18] | Greene, C.J., Nguyen, J.A., Cheung, S.M., Arnold, C.R., Balce, D.R., Wang, Y.T., et al. (2022) Macrophages Disseminate Pathogen Associated Molecular Patterns through the Direct Extracellular Release of the Soluble Content of Their Phagolysosomes. Nature Communications, 13, Article No. 3072. https://doi.org/10.1038/s41467-022-30654-4 |
[19] | 吴玲玲, 于化鹏, 陈丽嫦, 等. 炎症小体与自噬相互调控关系研究进展[J]. 国际呼吸杂志, 2018, 38(13): 1011-1015. |
[20] | 雷小楠, 杜春, 梁学海, 等. 论线粒体与缺血再灌注损伤的联系及肾移植中的研究进展[J]. 临床医学进展, 2023, 13(8): 13221-13228. |
[21] | Kma, L. and Baruah, T.J. (2021) The Interplay of ROS and the PI3K/AKT Pathway in Autophagy Regulation. Biotechnology and Applied Biochemistry, 69, 248-264. https://doi.org/10.1002/bab.2104 |
[22] | 阮培森, 郑耀, 董卓亚, 等. AMPK信号通道调节自噬和线粒体稳态的研究进展[J]. 中华危重病急救医学, 2024, 36(4): 425-429. |