|
基于表观遗传学母源肥胖对卵母细胞质量及胚胎发育的影响
|
Abstract:
肥胖与众多生殖系统疾病密切相关,如月经不调、生殖细胞质量下降以及流产等。肥胖通过DNA甲基化、组蛋白修饰以及非编码RNA表达等表观遗传学途径广泛影响卵母细胞和胚胎发育成熟的关键过程,这种影响不仅局限于胚胎发育阶段,还可能通过表观遗传修饰的跨代遗传对后代健康带来不良后果。本文对与母源肥胖导致卵母细胞质量下降相关的表观遗传学机制的研究进展进行综述,并联系已报道的相关机制提出干预标靶,以期改善表观遗传修饰对卵母细胞质量的消极影响。
Obesity is closely associated with numerous reproductive system disorders, such as irregular menstruation, decreased germ cell quality, and miscarriages. Obesity broadly affects key processes in oocyte and embryo developmental maturation through epigenetic pathways, including DNA methylation, histone modification, and non-coding RNA expression. This impact is not limited to the embryonic development stage but may also lead to adverse outcomes for offspring health through the transgenerational inheritance of epigenetic modifications. This article reviews the research progress on the epigenetic mechanisms related to decreased oocyte quality caused by maternal obesity and proposes intervention targets based on reported related mechanisms, aiming to mitigate the negative effects of epigenetic modifications on oocyte quality.
[1] | Reik, W., Dean, W. and Walter, J. (2001) Epigenetic Reprogramming in Mammalian Development. Science, 293, 1089-1093. https://doi.org/10.1126/science.1063443 |
[2] | Oswald, J., Engemann, S., Lane, N., Mayer, W., Olek, A., Fundele, R., et al. (2000) Active Demethylation of the Paternal Genome in the Mouse Zygote. Current Biology, 10, 475-478. https://doi.org/10.1016/s0960-9822(00)00448-6 |
[3] | Gu, T., Guo, F., Yang, H., Wu, H., Xu, G., Liu, W., et al. (2011) The Role of Tet3 DNA Dioxygenase in Epigenetic Reprogramming by Oocytes. Nature, 477, 606-610. https://doi.org/10.1038/nature10443 |
[4] | Inoue, A. and Zhang, Y. (2011) Replication-Dependent Loss of 5-Hydroxymethylcytosine in Mouse Preimplantation Embryos. Science, 334, 194-194. https://doi.org/10.1126/science.1212483 |
[5] | Hou, Y., Zhu, C., Duan, X., Liu, H., Wang, Q. and Sun, S. (2016) Both Diet and Gene Mutation Induced Obesity Affect Oocyte Quality in Mice. Scientific Reports, 6, Article No. 18858. https://doi.org/10.1038/srep18858 |
[6] | Han, L., Ren, C., Li, L., Li, X., Ge, J., Wang, H., et al. (2018) Embryonic Defects Induced by Maternal Obesity in Mice Derive from Stella Insufficiency in Oocytes. Nature Genetics, 50, 432-442. https://doi.org/10.1038/s41588-018-0055-6 |
[7] | Tang, S., Wu, H., Chen, Q., Tang, T., Li, J., An, H., et al. (2024) Maternal Obesity Induces the Meiotic Defects and Epigenetic Alterations during Fetal Oocyte Development. Advanced Science, 11, e2309184. https://doi.org/10.1002/advs.202309184 |
[8] | Anckaert, E., Romero, S., Adriaenssens, T. and Smitz, J. (2010) Effects of Low Methyl Donor Levels in Culture Medium during Mouse Follicle Culture on Oocyte Imprinting Establishment. Biology of Reproduction, 83, 377-386. https://doi.org/10.1095/biolreprod.109.082164 |
[9] | Pang, H., Ling, D., Cheng, Y., Akbar, R., Jin, L., Ren, J., et al. (2021) Gestational High‐Fat Diet Impaired Demethylation of Pparα and Induced Obesity of Offspring. Journal of Cellular and Molecular Medicine, 25, 5404-5416. https://doi.org/10.1111/jcmm.16551 |
[10] | Ge, Z., Liang, Q., Hou, Y., Han, Z., Schatten, H., Sun, Q., et al. (2014) Maternal Obesity and Diabetes May Cause DNA Methylation Alteration in the Spermatozoa of Offspring in Mice. Reproductive Biology and Endocrinology, 12, Article No. 29. https://doi.org/10.1186/1477-7827-12-29 |
[11] | Bian, C. and Yu, X. (2013) PGC7 Suppresses TET3 for Protecting DNA Methylation. Nucleic Acids Research, 42, 2893-2905. https://doi.org/10.1093/nar/gkt1261 |
[12] | Toriyama, K., Au Yeung, W.K., Inoue, A., Kurimoto, K., Yabuta, Y., Saitou, M., et al. (2024) DPPA3 Facilitates Genome-Wide DNA Demethylation in Mouse Primordial Germ Cells. BMC Genomics, 25, Article No. 344. https://doi.org/10.1186/s12864-024-10192-7 |
[13] | Nakatani, T., Yamagata, K., Kimura, T., Oda, M., Nakashima, H., Hori, M., et al. (2015) Stella Preserves Maternal Chromosome Integrity by Inhibiting 5hmC‐Induced γH2AX Accumulation. EMBO reports, 16, 582-589. https://doi.org/10.15252/embr.201439427 |
[14] | Uemura, S., Maenohara, S., Inoue, K., Ogonuki, N., Matoba, S., Ogura, A., et al. (2023) UHRF1 Is Essential for Proper Cytoplasmic Architecture and Function of Mouse Oocytes and Derived Embryos. Life Science Alliance, 6, e202301904. https://doi.org/10.26508/lsa.202301904 |
[15] | Guo, F., Li, X., Liang, D., Li, T., Zhu, P., Guo, H., et al. (2014) Active and Passive Demethylation of Male and Female Pronuclear DNA in the Mammalian Zygote. Cell Stem Cell, 15, 447-459. https://doi.org/10.1016/j.stem.2014.08.003 |
[16] | Dawlaty, M.M., Ganz, K., Powell, B.E., Hu, Y., Markoulaki, S., Cheng, A.W., et al. (2011) Tet1 Is Dispensable for Maintaining Pluripotency and Its Loss Is Compatible with Embryonic and Postnatal Development. Cell Stem Cell, 9, 166-175. https://doi.org/10.1016/j.stem.2011.07.010 |
[17] | Uh, K., Ryu, J., Farrell, K., Wax, N. and Lee, K. (2020) TET Family Regulates the Embryonic Pluripotency of Porcine Preimplantation Embryos by Maintaining the DNA Methylation Level of NANOG. Epigenetics, 15, 1228-1242. https://doi.org/10.1080/15592294.2020.1762392 |
[18] | Pan, M., Zhu, C., Ju, J., Xu, Y., Luo, S., Sun, S., et al. (2020) Single‐Cell Transcriptome Analysis Reveals That Maternal Obesity Affects DNA Repair, Histone Methylation, and Autophagy Level in Mouse Embryos. Journal of Cellular Physiology, 236, 4944-4953. https://doi.org/10.1002/jcp.30201 |
[19] | Inagaki, T., Tachibana, M., Magoori, K., Kudo, H., Tanaka, T., Okamura, M., et al. (2009) Obesity and Metabolic Syndrome in Histone Demethylase JHDM2a‐Deficient Mice. Genes to Cells, 14, 991-1001. https://doi.org/10.1111/j.1365-2443.2009.01326.x |
[20] | Huang, J., Ru, G., Sun, J., Sun, L. and Li, Z. (2022) Elevated RIF1 Participates in the Epigenetic Abnormalities of Zygotes by Regulating Histone Modifications on MuERV-L in Obese Mice. Molecular Medicine, 28, Article No. 17. https://doi.org/10.1186/s10020-022-00446-z |
[21] | Cuyàs, E., Fernández-Arroyo, S., Verdura, S., García, R.Á., Stursa, J., Werner, L., et al. (2017) Metformin Regulates Global DNA Methylation via Mitochondrial One-Carbon Metabolism. Oncogene, 37, 963-970. https://doi.org/10.1038/onc.2017.367 |
[22] | Filios, S.R. and Shalev, A. (2015) Β-Cell microRNAs: Small but Powerful. Diabetes, 64, 3631-3644. https://doi.org/10.2337/db15-0831 |
[23] | Huntzinger, E. and Izaurralde, E. (2011) Gene Silencing by microRNAs: Contributions of Translational Repression and Mrna Decay. Nature Reviews Genetics, 12, 99-110. https://doi.org/10.1038/nrg2936 |
[24] | Wyse, B.A., Salehi, R., Russell, S.J., Sangaralingam, M., Jahangiri, S., Tsang, B.K., et al. (2023) Obesity and PCOS Radically Alters the snRNA Composition of Follicular Fluid Extracellular Vesicles. Frontiers in Endocrinology, 14, Article 1205385. https://doi.org/10.3389/fendo.2023.1205385 |
[25] | Lee, H. (2015) Impact of Maternal Diet on the Epigenome during in Utero Life and the Developmental Programming of Diseases in Childhood and Adulthood. Nutrients, 7, 9492-9507. https://doi.org/10.3390/nu7115467 |
[26] | Benatti, R.O., Melo, A.M., Borges, F.O., Ignacio-Souza, L.M., Simino, L.A.P., Milanski, M., et al. (2014) Maternal High-Fat Diet Consumption Modulates Hepatic Lipid Metabolism and microRNA-122 (Mir-122) and microRNA-370 (Mir-370) Expression in Offspring. British Journal of Nutrition, 111, 2112-2122. https://doi.org/10.1017/s0007114514000579 |
[27] | Enquobahrie, D.A., Wander, P.L., Tadesse, M.G., Qiu, C., Holzman, C. and Williams, M.A. (2017) Maternal Pre-Pregnancy Body Mass Index and Circulating microRNAs in Pregnancy. Obesity Research & Clinical Practice, 11, 464-474. https://doi.org/10.1016/j.orcp.2016.10.287 |
[28] | Soták, M., Clark, M., Suur, B.E. and Börgeson, E. (2024) Inflammation and Resolution in Obesity. Nature Reviews Endocrinology, 21, 45-61. https://doi.org/10.1038/s41574-024-01047-y |
[29] | Park, M.Y., Tu, C., Perie, L., Verma, N., Serdan, T.D.A., Shamsi, F., et al. (2024) Targeted Deletion of Fibroblast Growth Factor 23 Rescues Metabolic Dysregulation of Diet-Induced Obesity in Female Mice. Endocrinology, 165, bqae141. https://doi.org/10.1210/endocr/bqae141 |
[30] | Bianco, A.C. and McAninch, E.A. (2013) The Role of Thyroid Hormone and Brown Adipose Tissue in Energy Homoeostasis. The Lancet Diabetes & Endocrinology, 1, 250-258. https://doi.org/10.1016/s2213-8587(13)70069-x |
[31] | Wu, Z., Martinez, M.E., St. Germain, D.L. and Hernandez, A. (2016) Type 3 Deiodinase Role on Central Thyroid Hormone Action Affects the Leptin-Melanocortin System and Circadian Activity. Endocrinology, 158, 419-430. https://doi.org/10.1210/en.2016-1680 |
[32] | Wulf, A., Harneit, A., Kröger, M., Kebenko, M., Wetzel, M.G. and Weitzel, J.M. (2008) T3-Mediated Expression of PGC-1α via a Far Upstream Located Thyroid Hormone Response Element. Molecular and Cellular Endocrinology, 287, 90-95. https://doi.org/10.1016/j.mce.2008.01.017 |
[33] | Chen, Y., Yang, Q., Hu, Y., Liu, X., de Avila, J.M., Zhu, M., et al. (2021) Imprinted lncRNA Dio3os Preprograms Intergenerational Brown Fat Development and Obesity Resistance. Nature Communications, 12, Article No. 6845. https://doi.org/10.1038/s41467-021-27171-1 |
[34] | Seto, E. and Yoshida, M. (2014) Erasers of Histone Acetylation: The Histone Deacetylase Enzymes. Cold Spring Harbor Perspectives in Biology, 6, a018713. https://doi.org/10.1101/cshperspect.a018713 |
[35] | Sun, L., Marin de Evsikova, C., Bian, K., Achille, A., Telles, E., Pei, H., et al. (2018) Programming and Regulation of Metabolic Homeostasis by HDAC11. EBioMedicine, 33, 157-168. https://doi.org/10.1016/j.ebiom.2018.06.025 |
[36] | Khan, S. and Jena, G.B. (2014) Protective Role of Sodium Butyrate, a HDAC Inhibitor on Beta-Cell Proliferation, Function and Glucose Homeostasis through Modulation of P38/ERK MAPK and Apoptotic Pathways: Study in Juvenile Diabetic Rat. Chemico-Biological Interactions, 213, 1-12. https://doi.org/10.1016/j.cbi.2014.02.001 |
[37] | Ye, J. (2013) Improving Insulin Sensitivity with HDAC Inhibitor. Diabetes, 62, 685-687. https://doi.org/10.2337/db12-1354 |
[38] | Huang, R., Sui, L., Fu, C., Zhai, Y., Dai, X., Zhang, S., et al. (2021) HDAC11 Inhibition Disrupts Porcine Oocyte Meiosis via Regulating α-Tubulin Acetylation and Histone Modifications. Aging, 13, 8849-8864. https://doi.org/10.18632/aging.202697 |
[39] | Anderson, R.M., Bosch, J.A., Goll, M.G., Hesselson, D., Dong, P.D.S., Shin, D., et al. (2009) Loss of Dnmt1 Catalytic Activity Reveals Multiple Roles for DNA Methylation during Pancreas Development and Regeneration. Developmental Biology, 334, 213-223. https://doi.org/10.1016/j.ydbio.2009.07.017 |
[40] | Yang, B.T., Dayeh, T.A., Volkov, P.A., Kirkpatrick, C.L., Malmgren, S., Jing, X., et al. (2012) Increased DNA Methylation and Decreased Expression of PDX-1 in Pancreatic Islets from Patients with Type 2 Diabetes. Molecular Endocrinology, 26, 1203-1212. https://doi.org/10.1210/me.2012-1004 |
[41] | Pinney, S.E., Jaeckle Santos, L.J., Han, Y., Stoffers, D.A. and Simmons, R.A. (2011) Exendin-4 Increases Histone Acetylase Activity and Reverses Epigenetic Modifications That Silence Pdx1 in the Intrauterine Growth Retarded Rat. Diabetologia, 54, 2606-2614. https://doi.org/10.1007/s00125-011-2250-1 |
[42] | Singh, N., Dueñas‐González, A., Lyko, F. and Medina‐Franco, J.L. (2009) Molecular Modeling and Molecular Dynamics Studies of Hydralazine with Human DNA Methyltransferase. ChemMedChem, 4, 792-799. https://doi.org/10.1002/cmdc.200900017 |
[43] | Lee, B.H., Yegnasubramanian, S., Lin, X. and Nelson, W.G. (2005) Procainamide Is a Specific Inhibitor of DNA Methyltransferase. Journal of Biological Chemistry, 280, 40749-40756. https://doi.org/10.1074/jbc.m505593200 |