全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

miRNA介导巨噬细胞极化在脊髓损伤修复中的研究进展与展望
Research Progress and Prospects of miRNA-Mediated Macrophage Polarization in the Repair of Spinal Cord Injury

DOI: 10.12677/acm.2025.152321, PP. 100-108

Keywords: 脊髓损伤,巨噬细胞极化,微小RNA,修复
Spinal Cord Injury
, Macrophage Polarization, MicroRNA, Repair

Full-Text   Cite this paper   Add to My Lib

Abstract:

SCI是一个严重的公共卫生问题,目前缺乏有效的治疗方法。巨噬细胞极化在SCI修复中起着关键作用,而miRNA对巨噬细胞极化的调节为SCI治疗提供了新的思路。该综述总结了该领域的最新研究进展,有助于研究者更好地理解SCI的病理机制,并为开发新的治疗策略提供参考。
Spinal cord injury (SCI) is a serious public health problem, and currently there is a lack of effective treatment methods. Macrophage polarization plays a crucial role in SCI repair, and the regulation of macrophage polarization by miRNA provides new ideas for SCI treatment. This review summarizes the latest research progress in this field, which helps researchers better understand the pathological mechanism of SCI and provides references for the development of new treatment strategies.

References

[1]  Eli, I., Lerner, D.P. and Ghogawala, Z. (2021) Acute Traumatic Spinal Cord Injury. Neurologic Clinics, 39, 471-488.
https://doi.org/10.1016/j.ncl.2021.02.004

[2]  夏宇, 丁璐, 邓宇斌. 小胶质细胞在脊髓损伤中的作用机制研究进展[J]. 神经损伤与功能重建, 2023, 18(2): 593-596.
[3]  Shang, J., Jiang, C., Cai, J., Chen, Z., Jin, S., Wang, F., et al. (2023) Knowledge Mapping of Macrophage in Spinal Cord Injury: A Bibliometric Analysis. World Neurosurgery, 180, e183-e197.
https://doi.org/10.1016/j.wneu.2023.09.022

[4]  Fu, S., Chen, S., Pang, Q., Zhang, M., Wu, X., Wan, X., et al. (2022) Advances in the Research of the Role of Macrophage/Microglia Polarization-Mediated Inflammatory Response in Spinal Cord Injury. Frontiers in Immunology, 13, Article ID: 1014013.
https://doi.org/10.3389/fimmu.2022.1014013

[5]  Feng, J., Zhang, Y., Zhu, Z., Gu, C., Waqas, A. and Chen, L. (2021) Emerging Exosomes and Exosomal MiRNAs in Spinal Cord Injury. Frontiers in Cell and Developmental Biology, 9, Article ID: 703989.
https://doi.org/10.3389/fcell.2021.703989

[6]  Wang, J., Tian, F., Cao, L., Du, R., Tong, J., Ding, X., et al. (2023) Macrophage Polarization in Spinal Cord Injury Repair and the Possible Role of MicroRNAs: A Review. Heliyon, 9, e22914.
https://doi.org/10.1016/j.heliyon.2023.e22914

[7]  曹宁, 封亚平, 谢佳芯. 《脊髓损伤神经修复治疗临床指南(中国版)2021》解读[J]. 中国现代神经疾病杂志, 2022, 22(8): 655-661.
[8]  田婷, 李晓光. 脊髓损伤再生修复中的问题与挑战[J]. 中国组织工程研究, 2021, 25(19): 3039-3048.
[9]  Anjum, A., Yazid, M.D., Fauzi Daud, M., Idris, J., Ng, A.M.H., Selvi Naicker, A., et al. (2020) Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. International Journal of Molecular Sciences, 21, Article No. 7533.
https://doi.org/10.3390/ijms21207533

[10]  杨溢珂, 任亚锋, 李冰, 等. 脊髓损伤后细胞自噬的调控治疗机制及策略[J]. 中国组织工程研究, 2025, 29(12): 3885-3896.
[11]  赵书杰, 郑子洋, 戴思名, 等. 中性粒细胞在脊髓损伤中作用的研究进展[J]. 中国脊柱脊髓杂志, 2023, 33(5): 463-467.
[12]  Tu, H., Ren, H., Jiang, J., Shao, C., Shi, Y. and Li, P. (2023) Dying to Defend: Neutrophil Death Pathways and Their Implications in Immunity. Advanced Science, 11, Article ID: 2306457.
https://doi.org/10.1002/advs.202306457

[13]  Islam, M.M. and Takeyama, N. (2023) Role of Neutrophil Extracellular Traps in Health and Disease Pathophysiology: Recent Insights and Advances. International Journal of Molecular Sciences, 24, Article No. 15805.
https://doi.org/10.3390/ijms242115805

[14]  Brennan, F.H., Li, Y., Wang, C., Ma, A., Guo, Q., Li, Y., et al. (2022) Microglia Coordinate Cellular Interactions during Spinal Cord Repair in Mice. Nature Communications, 13, Article No. 4096.
https://doi.org/10.1038/s41467-022-31797-0

[15]  Hellenbrand, D.J., Quinn, C.M., Piper, Z.J., Morehouse, C.N., Fixel, J.A. and Hanna, A.S. (2021) Inflammation after Spinal Cord Injury: A Review of the Critical Timeline of Signaling Cues and Cellular Infiltration. Journal of Neuroinflammation, 18, Article No. 284.
https://doi.org/10.1186/s12974-021-02337-2

[16]  Dalmau Gasull, A., Glavan, M., Samawar, S.K.R., Kapupara, K., Kelk, J., Rubio, M., et al. (2024) The Niche Matters: Origin, Function and Fate of CNS-Associated Macrophages during Health and Disease. Acta Neuropathologica, 147, Article No. 37.
https://doi.org/10.1007/s00401-023-02676-9

[17]  Tang, H., Gu, Y., Jiang, L., Zheng, G., Pan, Z. and Jiang, X. (2023) The Role of Immune Cells and Associated Immunological Factors in the Immune Response to Spinal Cord Injury. Frontiers in Immunology, 13, Article ID: 1070540.
https://doi.org/10.3389/fimmu.2022.1070540

[18]  Yu, Q., Cai, Z., Liu, X., Lin, S., Li, P., Ruan, Y., et al. (2024) Research Progress on Treating Spinal Cord Injury by Modulating the Phenotype of Microglia. Journal of Integrative Neuroscience, 23, Article No. 171.
https://doi.org/10.31083/j.jin2309171

[19]  Kloc, M., Ghobrial, R.M., Wosik, J., Lewicka, A., Lewicki, S. and Kubiak, J.Z. (2018) Macrophage Functions in Wound Healing. Journal of Tissue Engineering and Regenerative Medicine, 13, 99-109.
https://doi.org/10.1002/term.2772

[20]  Kadomoto, S., Izumi, K. and Mizokami, A. (2021) Macrophage Polarity and Disease Control. International Journal of Molecular Sciences, 23, Article No. 144.
https://doi.org/10.3390/ijms23010144

[21]  Mills, C.D., Kincaid, K., Alt, J.M., Heilman, M.J. and Hill, A.M. (2000) M-1/M-2 Macrophages and the Th1/Th2 Paradigm. The Journal of Immunology, 164, 6166-6173.
https://doi.org/10.4049/jimmunol.164.12.6166

[22]  Yuan, Z., Jiang, D., Yang, M., Tao, J., Hu, X., Yang, X., et al. (2024) Emerging Roles of Macrophage Polarization in Osteoarthritis: Mechanisms and Therapeutic Strategies. Orthopaedic Surgery, 16, 532-550.
https://doi.org/10.1111/os.13993

[23]  Zubova, S.G., Suvorova, I.I. and Karpenko, M.N. (2022) Macrophage and Microglia Polarization: Focus on Autophagy-Dependent Reprogramming. Frontiers in Bioscience-Scholar, 14, Article No. 3.
https://doi.org/10.31083/j.fbs1401003

[24]  Sun, G., Yang, S., Cao, G., Wang, Q., Hao, J., Wen, Q., et al. (2017) γδ T Cells Provide the Early Source of IFN-γ to Aggravate Lesions in Spinal Cord Injury. Journal of Experimental Medicine, 215, 521-535.
https://doi.org/10.1084/jem.20170686

[25]  Lv, J., Wang, Z., Wang, B., Deng, C., Wang, W. and Sun, L. (2024) S100A9 Induces Macrophage M2 Polarization and Immunomodulatory Role in the Lesion Site after Spinal Cord Injury in Rats. Molecular Neurobiology, 61, 5525-5540.
https://doi.org/10.1007/s12035-024-03920-3

[26]  Kobashi, S., Terashima, T., Katagi, M., Nakae, Y., Okano, J., Suzuki, Y., et al. (2020) Transplantation of M2-Deviated Microglia Promotes Recovery of Motor Function after Spinal Cord Injury in Mice. Molecular Therapy, 28, 254-265.
https://doi.org/10.1016/j.ymthe.2019.09.004

[27]  Jankovic, M.G., Stojkovic, M., Bojic, S., Jovicic, N., Kovacevic, M.M., Ivosevic, Z., et al. (2023) Scaling up Human Mesenchymal Stem Cell Manufacturing Using Bioreactors for Clinical Uses. Current Research in Translational Medicine, 71, Article ID: 103393.
https://doi.org/10.1016/j.retram.2023.103393

[28]  Ma, Y., Yang, H., Zong, X., Wu, J., Ji, X., Liu, W., et al. (2021) Artificial M2 Macrophages for Disease-Modifying Osteoarthritis Therapeutics. Biomaterials, 274, Article ID: 120865.
https://doi.org/10.1016/j.biomaterials.2021.120865

[29]  Li, K., Chen, Z., Chang, X., Xue, R., Wang, H. and Guo, W. (2024) WNT Signaling Pathway in Spinal Cord Injury: From Mechanisms to Potential Applications. Frontiers in Molecular Neuroscience, 17, Article ID: 1427054.
https://doi.org/10.3389/fnmol.2024.1427054

[30]  Kijima, K., Ono, G., Kobayakawa, K., Saiwai, H., Hara, M., Yoshizaki, S., et al. (2023) Zinc Deficiency Impairs Axonal Regeneration and Functional Recovery after Spinal Cord Injury by Modulating Macrophage Polarization via NF-κB Pathway. Frontiers in Immunology, 14, Article ID: 1290100.
https://doi.org/10.3389/fimmu.2023.1290100

[31]  Xiao, C., Yin, W., Zhong, Y., Luo, J., Liu, L., Liu, W., et al. (2022) The Role of PI3K/Akt Signalling Pathway in Spinal Cord Injury. Biomedicine & Pharmacotherapy, 156, Article ID: 113881.
https://doi.org/10.1016/j.biopha.2022.113881

[32]  Huang, S., Zhang, Y., Shu, H., Liu, W., Zhou, X. and Zhou, X. (2024) Advances of the MAPK Pathway in the Treatment of Spinal Cord Injury. CNS Neuroscience & Therapeutics, 30, e14807.
https://doi.org/10.1111/cns.14807

[33]  Guo, X., Jiang, C., Chen, Z., Wang, X., Hong, F. and Hao, D. (2023) Regulation of the JAK/STAT Signaling Pathway in Spinal Cord Injury: An Updated Review. Frontiers in Immunology, 14, Article ID: 1276445.
https://doi.org/10.3389/fimmu.2023.1276445

[34]  Ding, Y. and Chen, Q. (2022) mTOR Pathway: A Potential Therapeutic Target for Spinal Cord Injury. Biomedicine & Pharmacotherapy, 145, Article ID: 112430.
https://doi.org/10.1016/j.biopha.2021.112430

[35]  Deng, Z. and Chen, Y. (2023) Research Progress of MicroRNAs in Spinal Cord Injury. Journal of Integrative Neuroscience, 22, Article No. 31.
https://doi.org/10.31083/j.jin2202031

[36]  Sintakova, K. and Romanyuk, N. (2024) The Role of Small Extracellular Vesicles and MicroRNA as Their Cargo in the Spinal Cord Injury Pathophysiology and Therapy. Frontiers in Neuroscience, 18, Article ID: 1400413.
https://doi.org/10.3389/fnins.2024.1400413

[37]  Silvestro, S. and Mazzon, E. (2022) MiRNAs as Promising Translational Strategies for Neuronal Repair and Regeneration in Spinal Cord Injury. Cells, 11, Article No. 2177.
https://doi.org/10.3390/cells11142177

[38]  Kishore, A. and Petrek, M. (2021) Roles of Macrophage Polarization and Macrophage-Derived MiRNAs in Pulmonary Fibrosis. Frontiers in Immunology, 12, Article ID: 678457.
https://doi.org/10.3389/fimmu.2021.678457

[39]  Park, C.Y., Choi, Y.S. and McManus, M.T. (2010) Analysis of MicroRNA Knockouts in Mice. Human Molecular Genetics, 19, R169-R175.
https://doi.org/10.1093/hmg/ddq367

[40]  Shen, Y. and Cai, J. (2022) The Importance of Using Exosome-Loaded Mirna for the Treatment of Spinal Cord Injury. Molecular Neurobiology, 60, 447-459.
https://doi.org/10.1007/s12035-022-03088-8

[41]  Deng, Z. and Chen, Y. (2023) Research Progress of MicroRNAs in Spinal Cord Injury. Journal of Integrative Neuroscience, 22, Article No. 31.
https://doi.org/10.31083/j.jin2202031

[42]  Lu, L., McCurdy, S., Huang, S., Zhu, X., Peplowska, K., Tiirikainen, M., et al. (2016) Time Series miRNA-mRNA Integrated Analysis Reveals Critical MiRNAs and Targets in Macrophage Polarization. Scientific Reports, 6, Article No. 37446.
https://doi.org/10.1038/srep37446

[43]  Sprenkle, N.T., Serezani, C.H. and Pua, H.H. (2023) MicroRNAs in Macrophages: Regulators of Activation and Function. The Journal of Immunology, 210, 359-368.
https://doi.org/10.4049/jimmunol.2200467

[44]  Essandoh, K., Li, Y., Huo, J. and Fan, G. (2016) Mirna-Mediated Macrophage Polarization and Its Potential Role in the Regulation of Inflammatory Response. Shock, 46, 122-131.
https://doi.org/10.1097/shk.0000000000000604

[45]  Xie, N., Cui, H., Banerjee, S., Tan, Z., Salomao, R., Fu, M., et al. (2014) Mir-27a Regulates Inflammatory Response of Macrophages by Targeting Il-10. The Journal of Immunology, 193, 327-334.
https://doi.org/10.4049/jimmunol.1400203

[46]  Jiao, P., Wang, X., Luoreng, Z., Yang, J., Jia, L., Ma, Y., et al. (2021) Mir-223: An Effective Regulator of Immune Cell Differentiation and Inflammation. International Journal of Biological Sciences, 17, 2308-2322.
https://doi.org/10.7150/ijbs.59876

[47]  Curtale, G., Rubino, M. and Locati, M. (2019) MicroRNAs as Molecular Switches in Macrophage Activation. Frontiers in Immunology, 10, Article No. 799.
https://doi.org/10.3389/fimmu.2019.00799

[48]  Aili, Y., Maimaitiming, N., Mahemuti, Y., Qin, H., Wang, Y. and Wang, Z. (2021) The Role of Exosomal MiRNAs in Glioma: Biological Function and Clinical Application. Frontiers in Oncology, 11, Article ID: 686369.
https://doi.org/10.3389/fonc.2021.686369

[49]  Wang, T., Zhong, D., Qin, Z., He, S., Gong, Y., Li, W., et al. (2020) Mir-100-3p Inhibits the Adipogenic Differentiation of HMSCS by Targeting PIK3R1 via the PI3K/AKT Signaling Pathway. Aging, 12, 25090-25100.
https://doi.org/10.18632/aging.104074

[50]  Hu, J., Huang, C., Rao, P., Zhou, J., Wang, X., Tang, L., et al. (2019) Inhibition of Microrna-155 Attenuates Sympathetic Neural Remodeling Following Myocardial Infarction via Reducing M1 Macrophage Polarization and Inflammatory Responses in Mice. European Journal of Pharmacology, 851, 122-132.
https://doi.org/10.1016/j.ejphar.2019.02.001

[51]  Bassett, C., Triplett, H., Lott, K., Howard, K.M. and Kingsley, K. (2023) Differential Expression of MicroRNA (MiR-27, MiR-145) among Dental Pulp Stem Cells (DPSCs) Following Neurogenic Differentiation Stimuli. Biomedicines, 11, Article No. 3003.
https://doi.org/10.3390/biomedicines11113003

[52]  Mohapatra, S., Pioppini, C., Ozpolat, B. and Calin, G.A. (2021) Non-Coding RNAs Regulation of Macrophage Polarization in Cancer. Molecular Cancer, 20, Article No. 24.
https://doi.org/10.1186/s12943-021-01313-x

[53]  Tan, W., Dai, F., Yang, D., Deng, Z., Gu, R., Zhao, X., et al. (2022) Mir-93-5p Promotes Granulosa Cell Apoptosis and Ferroptosis by the NF-κB Signaling Pathway in Polycystic Ovary Syndrome. Frontiers in Immunology, 13, Article ID: 967151.
https://doi.org/10.3389/fimmu.2022.967151

[54]  Visintin, R. and Ray, S.K. (2022) Specific MicroRNAs for Modulation of Autophagy in Spinal Cord Injury. Brain Sciences, 12, Article No. 247.
https://doi.org/10.3390/brainsci12020247

[55]  Hu, Z., Zhang, L., Wang, H., Wang, Y., Tan, Y., Dang, L., et al. (2020) Targeted Silencing of MiRNA-132-3p Expression Rescues Disuse Osteopenia by Promoting Mesenchymal Stem Cell Osteogenic Differentiation and Osteogenesis in Mice. Stem Cell Research & Therapy, 11, Article No. 58.
https://doi.org/10.1186/s13287-020-1581-6

[56]  Chen, F., Zhang, Z. and Wang, D. (2022) MicroRNA-101a-3p Mimic Ameliorates Spinal Cord Ischemia/Reperfusion Injury. Neural Regeneration Research, 17, 2022-2028.
https://doi.org/10.4103/1673-5374.335164

[57]  Louw, A.M., Kolar, M.K., Novikova, L.N., Kingham, P.J., Wiberg, M., Kjems, J., et al. (2016) Chitosan Polyplex Mediated Delivery of MiRNA-124 Reduces Activation of Microglial Cells in Vitro and in Rat Models of Spinal Cord Injury. Nanomedicine: Nanotechnology, Biology and Medicine, 12, 643-653.
https://doi.org/10.1016/j.nano.2015.10.011

[58]  Shao, Y., Wang, Q., Liu, L., Wang, J. and Wu, M. (2023) Exosomes from MicroRNA 146a Overexpressed Bone Marrow Mesenchymal Stem Cells Protect against Spinal Cord Injury in Rats. Journal of Orthopaedic Science, 28, 1149-1156.
https://doi.org/10.1016/j.jos.2022.07.013

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133