全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

3D生物打印在牙周炎组织再生中的研究进展
Research Progress of 3D Bioprinting in Periodontal Tissue Regeneration

DOI: 10.12677/acm.2025.152386, PP. 618-624

Keywords: 3D生物打印,牙周炎,牙周组织再生,生物墨水,细胞负载
3D Bioprinting
, Periodontitis, Periodontal Tissue Regeneration, Bioink, Cell Load

Full-Text   Cite this paper   Add to My Lib

Abstract:

牙周炎疾病具有累及组织广泛、缺损形状特异等特点,在临床上再生难度较大。3D生物打印技术具有快速成型、个性化、高仿生的特点,在牙周再生方面的研究及应用日渐增多。本论文就3D生物打印技术在口腔内牙周炎组织再生领域的研究现状、应用潜力与展望进行综述,包括牙周韧带再生、牙槽骨再生及牙龈再生方面的研究及应用。3D生物打印技术在牙周炎组织再生领域具有广阔的研究和应用前景。
Periodontitis is characterized by extensive tissue accumulation and specific defect shapes, making it difficult to regenerate clinically. 3D bioprinting technology has the characteristics of rapid prototyping, personalization, and high biomimicry, and its research and application in periodontal regeneration are increasing day by day. This paper reviews the current research status, potential applications, and prospects of 3D bioprinting technology in the field of periodontal tissue regeneration in the oral cavity, including research and applications in periodontal ligament regeneration, alveolar bone regeneration, and gingival regeneration. 3D bioprinting technology has broad research and application prospects in the field of periodontal tissue regeneration.

References

[1]  Hajishengallis, G. and Korostoff, J.M. (2017) Revisiting the Page & Schroeder Model: The Good, the Bad and the Unknowns in the Periodontal Host Response 40 Years Later. Periodontology 2000, 75, 116-151.
https://doi.org/10.1111/prd.12181
[2]  Zeng, M.Y., Inohara, N. and Nuñez, G. (2017) Mechanisms of Inflammation-Driven Bacterial Dysbiosis in the Gut. Mucosal Immunology, 10, 18-26.
https://doi.org/10.1038/mi.2016.75
[3]  Cekici, A., Kantarci, A., Hasturk, H. and Van Dyke, T.E. (2013) Inflammatory and Immune Pathways in the Pathogenesis of Periodontal Disease. Periodontology 2000, 64, 57-80.
https://doi.org/10.1111/prd.12002
[4]  祁桂祥. 犬牙周膜干细胞组织工程支架对引导牙周再生作用的研究[D]: [硕士学位论文]. 咸阳: 西北农林科技大学, 2023.
[5]  Dangaria, S.J., Ito, Y., Luan, X. and Diekwisch, T.G.H. (2011) Successful Periodontal Ligament Regeneration by Periodontal Progenitor Preseeding on Natural Tooth Root Surfaces. Stem Cells and Development, 20, 1659-1668.
https://doi.org/10.1089/scd.2010.0431
[6]  郭星, 高丹妮, 谢言, 等. 全口分区牙周翻瓣术+GTR治疗广泛型侵袭性牙周炎1例[J]. 牙体牙髓牙周病学杂志, 2024, 29(7): 408-410, 416.
[7]  戚岳孙, 林春男, 吴晔. 伴牙周炎患者种植牙同期行引导性骨再生(GBR)技术治疗对牙槽骨吸收的影响[J]. 中国医疗器械信息, 2024, 30(8): 29-31.
[8]  Aytac, Z., Dubey, N., Daghrery, A., Ferreira, J.A., de Souza Araújo, I.J., Castilho, M., et al. (2021) Innovations in Craniofacial Bone and Periodontal Tissue Engineering—From Electrospinning to Converged Biofabrication. International Materials Reviews, 67, 347-384.
https://doi.org/10.1080/09506608.2021.1946236
[9]  Gungor-Ozkerim, P.S., Inci, I., Zhang, Y.S., Khademhosseini, A. and Dokmeci, M.R. (2018) Bioinks for 3D Bioprinting: An Overview. Biomaterials Science, 6, 915-946.
https://doi.org/10.1039/c7bm00765e
[10]  Zhou, F., Hong, Y., Liang, R., Zhang, X., Liao, Y., Jiang, D., et al. (2020) Rapid Printing of Bio-Inspired 3D Tissue Constructs for Skin Regeneration. Biomaterials, 258, Article ID: 120287.
https://doi.org/10.1016/j.biomaterials.2020.120287
[11]  Vu, A.A., Burke, D.A., Bandyopadhyay, A. and Bose, S. (2021) Effects of Surface Area and Topography on 3D Printed Tricalcium Phosphate Scaffolds for Bone Grafting Applications. Additive Manufacturing, 39, Article ID: 101870.
https://doi.org/10.1016/j.addma.2021.101870
[12]  Miao, G., Liang, L., Li, W., Ma, C., Pan, Y., Zhao, H., et al. (2023) 3D Bioprinting of a Bioactive Composite Scaffold for Cell Delivery in Periodontal Tissue Regeneration. Biomolecules, 13, Article 1062.
https://doi.org/10.3390/biom13071062
[13]  Yang, X., Ma, Y., Wang, X., Yuan, S., Huo, F., Yi, G., et al. (2022) A 3D-Bioprinted Functional Module Based on Decellularized Extracellular Matrix Bioink for Periodontal Regeneration. Advanced Science, 10, Article ID: 2205041.
https://doi.org/10.1002/advs.202205041
[14]  Zhang, J., Wehrle, E., Rubert, M. and Müller, R. (2021) 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors. International Journal of Molecular Sciences, 22, Article 3971.
https://doi.org/10.3390/ijms22083971
[15]  卜晓霜, 王晓, 潘涛华, 等. MB-PDT辅助基础治疗对下前牙牙槽骨角形吸收的临床疗效评价[J]. 上海口腔医学, 2024, 33(3): 265-268.
[16]  陆玉平, 徐燕, 雷俊俊. 黄连汤联合牙周基础治疗对牙周炎的临床疗效[J]. 深圳中西医结合杂志, 2024, 34(8): 50-53.
[17]  潘建东, 沈宏, 王静. 激光辅助根面平整术对中重度慢性牙周炎患者牙周组织、牙龈微循环的影响[J]. 中国医学创新, 2023, 20(9): 117-120.
[18]  郑细娇, 严翔, 程凯. 二壁或三壁骨下袋形成的牙周骨缺损的临床研究[J]. 口腔医学研究, 2015, 31(7): 741.
[19]  Nibali, L., Sultan, D., Arena, C., Pelekos, G., Lin, G. and Tonetti, M. (2020) Periodontal Infrabony Defects: Systematic Review of Healing by Defect Morphology Following Regenerative Surgery. Journal of Clinical Periodontology, 48, 101-114.
https://doi.org/10.1111/jcpe.13381
[20]  Hurng, J.M., Kurylo, M.P., Marshall, G.W., Webb, S.M., Ryder, M.I. and Ho, S.P. (2011) Discontinuities in the Human Bone-PDL-Cementum Complex. Biomaterials, 32, 7106-7117.
https://doi.org/10.1016/j.biomaterials.2011.06.021
[21]  Lee, U., Yun, S., Cao, H., Ahn, G., Shim, J., Woo, S., et al. (2021) Bioprinting on 3D Printed Titanium Scaffolds for Periodontal Ligament Regeneration. Cells, 10, Article 1337.
https://doi.org/10.3390/cells10061337
[22]  Ma, Y., Yang, X., Chen, Y., Zhang, J., Gai, K., Chen, J., et al. (2023) Biomimetic Peridontium Patches for Functional Periodontal Regeneration. Advanced Healthcare Materials, 12, Article ID: 2202169.
https://doi.org/10.1002/adhm.202202169
[23]  Qin, H., Wei, Y., Han, J., Jiang, X., Yang, X., Wu, Y., et al. (2022) 3D Printed Bioceramic Scaffolds: Adjusting Pore Dimension Is Beneficial for Mandibular Bone Defects Repair. Journal of Tissue Engineering and Regenerative Medicine, 16, 409-421.
https://doi.org/10.1002/term.3287
[24]  Anderson, M., Dubey, N., Bogie, K., Cao, C., Li, J., Lerchbacker, J., et al. (2022) Three-dimensional Printing of Clinical Scale and Personalized Calcium Phosphate Scaffolds for Alveolar Bone Reconstruction. Dental Materials, 38, 529-539.
https://doi.org/10.1016/j.dental.2021.12.141
[25]  Buyuksungur, S., Hasirci, V. and Hasirci, N. (2021) 3d Printed Hybrid Bone Constructs of PCL and Dental Pulp Stem Cells Loaded GELMA. Journal of Biomedical Materials Research Part A, 109, 2425-2437.
https://doi.org/10.1002/jbm.a.37235
[26]  勒义官. 可紫外光交联的黄原胶墨水3D生物打印用于软骨组织工程研究[D]: [博士学位论文]. 南宁: 广西医科大学, 2019.
[27]  Yu, G., Zhu, W., Zhao, Y., Cui, H., Chen, H., Chen, Y., et al. (2024) 3D-Printed Bioink Loading with Stem Cells and Cellular Vesicles for Periodontitis-Derived Bone Defect Repair. Biofabrication, 16, Article ID: 025007.
https://doi.org/10.1088/1758-5090/ad2081
[28]  唐慧琳, 邱韬, 郭维华. 三维生物打印技术在牙再生中的研究进展[J]. 口腔生物医学, 2022, 13(2): 120-124.
[29]  Li, C., Xu, X., Gao, J., Zhang, X., Chen, Y., Li, R., et al. (2022) 3D Printed Scaffold for Repairing Bone Defects in Apical Periodontitis. BMC Oral Health, 22, Article No. 327.
https://doi.org/10.1186/s12903-022-02362-4
[30]  Liu, H., Wang, C., Sun, X., Zhan, C., Li, Z., Qiu, L., et al. (2022) Silk Fibroin/Collagen/Hydroxyapatite Scaffolds Obtained by 3D Printing Technology and Loaded with Recombinant Human Erythropoietin in the Reconstruction of Alveolar Bone Defects. ACS Biomaterials Science & Engineering, 8, 5245-5256.
https://doi.org/10.1021/acsbiomaterials.2c00690
[31]  Park, J., Park, S., Kim, J.E., Jang, K., Seonwoo, H. and Chung, J.H. (2021) Enhanced Osteogenic Differentiation of Periodontal Ligament Stem Cells Using a Graphene Oxide-Coated Poly(ε-Caprolactone) Scaffold. Polymers, 13, Article 797.
https://doi.org/10.3390/polym13050797
[32]  胡琳驰, 黄温棉, 王仁飞. 改良游离牙龈移植技术临床效果评价[J]. 上海口腔医学, 2019, 28(1): 76-80.
[33]  Yi, K., Li, Q., Lian, X., Wang, Y. and Tang, Z. (2022) Utilizing 3D Bioprinted Platelet-Rich Fibrin-Based Materials to Promote the Regeneration of Oral Soft Tissue. Regenerative Biomaterials, 9, rbac021.
https://doi.org/10.1093/rb/rbac021
[34]  Whitaker, R., Hernaez-Estrada, B., Hernandez, R.M., Santos-Vizcaino, E. and Spiller, K.L. (2021) Immunomodulatory Biomaterials for Tissue Repair. Chemical Reviews, 121, 11305-11335.
https://doi.org/10.1021/acs.chemrev.0c00895
[35]  Sun, X., Ma, Z., Zhao, X., Jin, W., Zhang, C., Ma, J., et al. (2021) Three-dimensional Bioprinting of Multicell-Laden Scaffolds Containing Bone Morphogenic Protein-4 for Promoting M2 Macrophage Polarization and Accelerating Bone Defect Repair in Diabetes Mellitus. Bioactive Materials, 6, 757-769.
https://doi.org/10.1016/j.bioactmat.2020.08.030

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133