|
基于有限元法的霍姆赫兹线圈建模与电磁导航系统磁场优化研究
|
Abstract:
电磁导航系统作为一种关键技术,已广泛应用于医学影像引导手术、机器人导航以及虚拟现实等领域,其核心组件磁场发生器的性能直接决定了系统的精度与稳定性。霍姆赫兹线圈因其生成均匀磁场的优异特性,成为电磁导航系统中磁场发生器设计的主要选择。然而,实际应用中霍姆赫兹线圈的磁场分布会受到电流频率、线圈几何形状及周围环境等因素的影响,特别是在交流电激励下,磁场强度和分布会随着频率变化而动态变化。因此,精确预测和优化霍姆赫兹线圈的磁场成为设计高效电磁导航系统的关键任务。为解决上述问题,本文基于有限元法,利用COMSOL Multiphysics对霍姆赫兹线圈的电磁场特性进行了建模和仿真。研究重点探讨了交流电激励下线圈产生的磁场分布特性,分析了电流频率、线圈几何参数对磁场均匀性和强度的影响。通过仿真结果验证,霍姆赫兹线圈能够在特定条件下生成稳定且均匀的磁场,同时参数的调整对磁场性能优化具有显著作用。本研究为霍姆赫兹线圈的设计优化提供了理论支持,也为电磁导航系统的高效运行奠定了基础。
As a key technology, electromagnetic navigation systems have been widely used in medical imaging-guided surgeries, robotic navigation, and virtual reality applications. The performance of the magnetic field generator, the core component of such systems, directly determines their accuracy and stability. Helmholtz coils, known for their ability to generate uniform magnetic fields, have become the primary choice for the design of magnetic field generators in electromagnetic navigation systems. However, in practical applications, the magnetic field distribution of Helmholtz coils is influenced by factors such as current frequency, coil geometry, and surrounding environment. In particular, under AC excitation, the strength and distribution of the magnetic field dynamically change with frequency. Therefore, accurately predicting and optimizing the magnetic field of Helmholtz coils is crucial for designing efficient electromagnetic navigation systems.To address this issue, this study utilizes the finite element method and COMSOL Multiphysics to model and simulate the electromagnetic characteristics of Helmholtz coils. The research focuses on investigating the magnetic field distribution under AC excitation and analyzing the effects of current frequency and coil geometry parameters on the uniformity and strength of the magnetic field. The simulation results verify that Helmholtz coils can generate stable and uniform magnetic fields under specific conditions, and parameter adjustments have significant effects on optimizing magnetic field performance. This study provides theoretical support for the design and optimization of Helmholtz coils and lays a foundation for the efficient operation of electromagnetic navigation systems.
[1] | Takeba, J., Umakoshi, K., Kikuchi, S., Matsumoto, H., Annen, S., Moriyama, N., et al. (2017) Accuracy of Screw Fixation Using the O-Arm® and Stealthstation® Navigation System for Unstable Pelvic Ring Fractures. European Journal of Orthopaedic Surgery & Traumatology, 28, 431-438. https://doi.org/10.1007/s00590-017-2075-9 |
[2] | Takai, H., Murayama, M., Kii, S., Mito, D., Hayai, C., Motohashi, S., et al. (2018) Accuracy Analysis of Computer-Assisted Surgery for Femoral Trochanteric Fracture Using a Fluoroscopic Navigation System: Stryker ADAPT®System. Injury, 49, 1149-1154. https://doi.org/10.1016/j.injury.2018.03.014 |
[3] | Jackson, P., Simon, R. and Linte, C. (2020). Surgical Tracking, Registration, and Navigation Characterization for Image-Guided Renal Interventions. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, 20-24 July 2020, 5081-5084. https://doi.org/10.1109/embc44109.2020.9175270 |
[4] | 刘仲思, 杨建中, 张帆, 等. 用于心磁传感器测试系统的三轴向亥姆赫兹线圈的设计与仿真[J]. 工程设计学报, 2019, 26(2): 230-236. |
[5] | 闫林波, 何欣波, 魏兵, 等. 基于COMSOL动网格的电磁轨道炮动态电磁特性仿真[J/OL]. 强激光与粒子束, 1-7. http://kns.cnki.net/kcms/detail/51.1311.O4.20241217.1046.004.html, 2024-12-28. |
[6] | 杨柳青. 利用Matlab模拟亥姆赫兹线圈周围空间中的磁场分布[J]. 数码世界, 2018(10): 102-103. |
[7] | 佘枭雄, 黄刚, 刘熹微, 等. 利用智能手机定量研究亥姆赫兹线圈磁场分布[J]. 大学物理实验, 2022, 35(2): 7-10. |
[8] | 姚金明, 张腾飞, 韩辉, 等. 基于COMSOL Multiphysic的电枢/轨道接触界面多物理场耦合与教学应用[J/OL]. 物理与工程, 1-7. http://kns.cnki.net/kcms/detail/11.4483.O3.20241212.0952.002.html, 2024-12-28. |