全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进蚁群算法降低电商物流多仓库车辆路径调度成本问题
Reducing the Routing Cost of Multi-Warehouse Vehicles in E-Commerce Logistics Based on Improved Ant Colony Algorithm

DOI: 10.12677/ecl.2025.142539, PP. 433-444

Keywords: 多仓库车辆路径问题,梯形模糊时间窗,改进蚁群算法,电商物流
Multi-Warehouse Vehicle Routing Problem
, Trapezoidal Fuzzy Time Window,Improved Ant Colony Algorithm, E-Commerce Logistics

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对带有时间窗约束的多仓库开放型车辆路径问题,提出了一种梯形模糊数方法对时间窗进行模糊化处理。在用户满意度函数和时间惩罚成本函数的基础上,建立了更加贴近实际场景的优化模型。为降低电商物流成本,本文假设系统允许存在一个或多个虚拟配送中心,并设计了一种改进的蚁群优化算法以求解系统的最小成本问题。通过在不同规模的实验数据集上进行测试,结果表明该算法在总成本方面具有显著优势:相较于基本蚁群算法降低了10%,相较于随机生成方法降低了29%。因此,本文所提出的数学模型具有合理性和有效性,特别适用于多中心、多需求点和开放型系统背景下的电商物流成本优化场景。
In this paper, a trapezoidal fuzzy number method is proposed to blur the time window for multi-warehouse open vehicle routing problem with time window constraint. On the basis of user satisfaction function and time penalty cost function, an optimization model which is closer to the actual scenario is established. In order to reduce the cost of e-commerce logistics, this paper assumes that the system allows one or more virtual distribution centers, and designs an improved ant colony optimization algorithm to solve the minimum cost problem of the system. When tested on experimental datasets of different sizes, the results show that the algorithm has a significant advantage in terms of total cost: 10% lower than the basic ant colony algorithm and 29% lower than the random generation method. Therefore, the mathematical model proposed in this paper is reasonable and effective, especially applicable to the scenario of e-commerce logistics cost optimization under the background of multi-center, multi-demand point and open system.

References

[1]  任晓玲, 赵涓涓, 任佳丽. 混合自适应布谷鸟算法的物流配送路径优化[J]. 计算机仿真, 2024, 41(5): 168-171+241.
[2]  高娇娇, 郭秀萍. 考虑卡车无人机协同配送模式下的车辆路径问题研究[J]. 工业工程与管理, 2024, 29(3): 30-39.
[3]  罗明亮, 袁鹏程. 考虑客户满意度的车辆路径优化及其算法研究[J]. 河南师范大学学报(自然科学版), 2024, 52(2): 51-61.
[4]  梁学恒, 杨家其, 向子权. 两阶段BSO-SA算法求解带单边软时间窗的多车型VRP问题[J]. 武汉理工大学学报(交通科学与工程版), 2024, 48(1): 19-24.
[5]  杨珺, 冯鹏祥, 孙昊, 等. 电动汽车物流配送系统的换电站选址与路径优化问题研究[J]. 中国管理科学, 2015, 23(9): 87-96.
[6]  范厚明, 吴嘉鑫, 耿静, 等. 模糊需求与时间窗的车辆路径问题及混合遗传算法求解[J]. 系统管理学报, 2020, 29(1): 107-118.
[7]  唐坚强, 祁超, 王红卫. 带时间窗的多仓库订单拆分与异构车辆路径联合优化方法[J]. 系统工程理论与实践, 2023, 43(5): 1446-1464.
[8]  周莉芸, 韩曙光. 多仓库半开放式带距离限制的车辆路径问题研究[J/OL]. 运筹学学报(中英文): 1-12.
http://kns.cnki.net/kcms/detail/31.1732.O1.20240701.1519.022.html, 2024-11-06.
[9]  张歆悦, 靳鹏, 胡笑旋, 等. 时间依赖型多配送中心带时间窗的开放式车辆路径问题研究[J]. 中国管理科学, 2024, 32(1): 146-157.
[10]  Dubillard, M., Lorca, X. and Lauras, M. (2023) An Ant Colony System for the Skilled, Multi-Depot VRP with Due Dates and Time Windows. IFAC-PapersOnLine, 56, 11129-11134.
https://doi.org/10.1016/j.ifacol.2023.10.828
[11]  Xue, S. (2023) An Adaptive Ant Colony Algorithm for Crowdsourcing Multi-Depot Vehicle Routing Problem with Time Windows. Sustainable Operations and Computers, 4, 62-75.
https://doi.org/10.1016/j.susoc.2023.02.002
[12]  Li, Y., Zhang, Z., Sun, Q. and Huang, Y. (2024) An Improved Ant Colony Algorithm for Multiple Unmanned Aerial Vehicles Route Planning. Journal of the Franklin Institute, 361, Article ID: 107060.
https://doi.org/10.1016/j.jfranklin.2024.107060

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133