|
可再生能源多级利用系统建模与计算机仿真
|
Abstract:
化石燃料的短缺以及环境问题的日益突出,探索一种清洁无污染、燃料利用率高的能源利用方式迫在眉睫,固体氧化物燃料电池与微型燃气轮机(SOFC-MGT)联合发电系统可以有效提高能源的利用率,本文提出了一种基于风能、太阳能、生物质能的固体氧化物燃料电池–微型燃气轮机–汽轮机联合循环发电系统,利用Matlab/Simulink建模与计算机仿真分析了不同燃料流量对新型SOFC-MGT底层循环系统功率、效率等性能的影响,并将新型SOFC-MGT底层循环系统输出功率等性能与传统的SOFC-MGT底层循环系统进行了对比分析,研究结果表明,新型SOFC-MGT底层循环系统的输出性能要优于传统的底层循环,在涡轮尾气能量回收方面,新型SOFC-MGT底层循环系统要优于传统的底层循环系统。
The shortage of fossil fuels and the increasingly prominent environmental problems make it urgent to explore a clean and non-polluting way of energy utilisation with high fuel utilisation, and a solid oxide fuel cell and micro gas turbine (SOFC-MGT) combined cycle power generation system can effectively improve the energy utilisation. In this paper on Matlab/Simulink, a wind, solar and biomass based solid oxide fuel cell-micro gas turbine- steam turbine combined cycle power generation system, the influence of different fuel flow rates on the power and efficiency of the new SOFC-MGT bottom cycle system is analyzed, and the output power and other performances of the new SOFC-MGT bottom cycle system are compared and analyzed with that of the traditional SOFC-MGT bottom cycle system, and the results of the study show that the output performance of the new SOFC-MGT bottom cycle system is better than that of the traditional bottom cycle, and the output performance is better than that of the traditional bottom cycle. The results show that the output performance of the new SOFC-MGT bottom cycle system is better than that of the traditional bottom cycle, and the new SOFC-MGT bottom cycle system is superior to the traditional bottom cycle system in terms of the energy recovery of the turbine exhaust gas.
[1] | Cinti, G., Discepoli, G., Sisani, E. and Desideri, U. (2016) SOFC Operating with Ammonia: Stack Test and System Analysis. International Journal of Hydrogen Energy, 41, 13583-13590. https://doi.org/10.1016/j.ijhydene.2016.06.070 |
[2] | 朱润凯, 梁前超, 闫东, 等. 固体氧化物燃料电池与微型燃气轮机联合发电建模仿真研究[J]. 舰船科学技术, 2017, 39(4): 95-99. |
[3] | Meng, Q., Han, J., Kong, L., Liu, H., Zhang, T. and Yu, Z. (2017) Thermodynamic Analysis of Combined Power Generation System Based on SOFC/GT and Transcritical Carbon Dioxide Cycle. International Journal of Hydrogen Energy, 42, 4673-4678. https://doi.org/10.1016/j.ijhydene.2016.09.067 |
[4] | 詹海洋, 梁前超, 朱润凯, 等. 燃料电池-燃气轮机底层循环性能研究[J]. 舰船科学技术, 2018, 40(8): 76-80. |
[5] | 朱润凯, 梁前超, 詹海洋, 等. 直接内重整型固体氧化物燃料电池建模与仿真[J]. 船电技术, 2018, 38(3): 30-35. |
[6] | Ud Din, Z. and Zainal, Z.A. (2016) Biomass Integrated Gasification-SOFC Systems: Technology Overview. Renewable and Sustainable Energy Reviews, 53, 1356-1376. https://doi.org/10.1016/j.rser.2015.09.013 |
[7] | Camblong, H., Baudoin, S., Vechiu, I. and Etxeberria, A. (2016) Design of a SOFC/GT/SCS Hybrid Power System to Supply a Rural Isolated Microgrid. Energy Conversion and Management, 117, 12-20. https://doi.org/10.1016/j.enconman.2016.03.006 |
[8] | Ao, C.-Y., Zhang, N. and Chen, H.-Q. (2001) Research of Dynamic Simulative Model of Triaxial Gas Turbines Based on Matlab. Nuclear Power Engineering, 16, 523-526. |
[9] | Yu, Y.-H., Sun, F.-R., Zhang, R.-X. (2003) Research of Dynamic Simulative Model of Gas Turbines Based on Matlab. Gas Turbine Technology, 16. |
[10] | 安连锁, 张健, 刘树华, 等. 固体氧化物燃料电池与燃气轮机混合发电系统[J]. 可再生能源, 2008, 26(1): 62-64. |
[11] | Selimovic, A. and Palsson, J. (2002) Networked Solid Oxide Fuel Cell Stacks Combined with a Gas Turbine Cycle. Journal of Power Sources, 106, 76-82. https://doi.org/10.1016/s0378-7753(01)01051-5 |
[12] | Akkaya, A.V. (2006) Electrochemical Model for Performance Analysis of a Tubular SOFC. International Journal of Energy Research, 31, 79-98. https://doi.org/10.1002/er.1238 |
[13] | Zhu, B. (2006) Next Generation Fuel Cell R&D. International Journal of Energy Research, 30, 895-903. https://doi.org/10.1002/er.1195 |