全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

废弃矿井封存超临界二氧化碳:安全挑战与对策
Supercritical CO2 Storage in Abandoned Mines: Safety Challenges and Countermeasures

DOI: 10.12677/me.2025.131015, PP. 122-131

Keywords: 废弃矿井,二氧化碳封存,超临界CO2,安全评价
Abandoned Mines
, CO2 Sequestration, Supercritical CO2, Safety Evaluation

Full-Text   Cite this paper   Add to My Lib

Abstract:

在致力于达成“碳中和”与“碳达峰”宏伟目标的背景下,探索废弃矿井作为二氧化碳地质封存的有效载体,对于提升资源循环利用效率及减缓全球气候变化具有显著价值。本文系统性地探究了将废弃矿井应用于CO2封存的可行性,多维度地涵盖了地质构造特征、埋藏深度适宜性,以及地温条件等关键要素。同时,本文深入剖析了CO2对封存设施潜在的腐蚀影响机制,并对废弃矿井内实施CO2封存所涉及的安全隐患进行了详细的阐述,旨在全面评估该技术的环境适应性与风险控制能力,进一步讨论了安全监测技术在CO2封存领域的适用性和CO2封存的风险分析。对于推动废弃资源再利用、实现低碳可持续发展目标具有深远的理论与实践意义。
In the context of striving to achieve the grand goals of “carbon neutrality” and “carbon peaking”, exploring abandoned mines as an effective carrier of geological storage of carbon dioxide is of significant value for improving the efficiency of resource recycling and mitigating global climate change. This paper systematically explores the feasibility of applying abandoned mines to CO2 storage, covering key factors such as geological structure characteristics, suitability of burial depth, and geothermal conditions in multiple dimensions. At the same time, this paper deeply analyzes the potential corrosion mechanism of CO2 in storage facilities and elaborates on the potential safety hazards involved in the implementation of CO2 storage in abandoned mines, aiming to comprehensively evaluate the environmental adaptability and risk control ability of the technology and further discuss the applicability of safety monitoring technology in the field of CO2 storage and the risk analysis of CO2 storage. It has far-reaching theoretical and practical significance for promoting the reuse of waste resources and achieving low-carbon sustainable development goals.

References

[1]  谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(7): 2197-2211.
[2]  郑喜鹏, 马晨. 实现碳达峰、碳中和的措施建议——顶层设计[J]. 起重运输机械, 2024(21): 22-23.
[3]  郭二果, 李长青. 我国低碳技术发展背景现状与趋势[J]. 北方经济, 2023(8): 39-43.
[4]  薛博, 刘勇, 王沉, 等. 碳捕获、封存与利用技术及煤层封存CO2研究进展[J]. 化学世界, 2020, 61(4): 294-297.
[5]  张洪涛, 文冬光, 李义连, 等. 中国CO2地质埋存条件分析及有关建议[J]. 地质通报, 2005, 24(12): 1107-1110.
[6]  叶建平, 张 军, 韩学婷, 等. 深煤层井组CO2注入提高采收率关键参数模拟和实验[J]. 煤炭学报, 2016, 41(1): 149-155.
[7]  袁亮. 推动我国关闭/废弃矿井资源精准开发利用研究[J]. 煤炭经济研究, 2019, 39(5): 1.
[8]  Pan, Z., Ye, J., Zhou, F., Tan, Y., Connell, L.D. and Fan, J. (2017) CO2 Storage in Coal to Enhance Coalbed Methane Recovery: A Review of Field Experiments in China. International Geology Review, 60, 754-776.
https://doi.org/10.1080/00206814.2017.1373607
[9]  Gale, J. and Freund, P. (2001) Coal-Bed Methane Enhancement with CO2 Sequestration Worldwide Potential. Environmental Geosciences, 8, 210-217.
https://doi.org/10.1046/j.1526-0984.2001.008003210.x
[10]  Mavor, M., Gunter, W. and Robinson, J. (2004) Alberta Multiwell Micro-Pilot Testing for CBM Properties, Enhanced Methane Recovery and CO2 Storage Potential. Proceedings of SPE Annual Technical Conference and Exhibition, Houston, 26-29 September 2004, SPE-90256-MS.
https://doi.org/10.2523/90256-ms
[11]  叶建平, 冯三利, 范志强, 等. 沁水盆地南部注二氧化碳提高煤层气采收率微型先导性试验研究[J]. 石油学报, 2007, 28(4): 77-80.
[12]  刘长江, 宋璠, 张琨. CO2地质埋藏深度对高阶煤孔隙结构的影响[J]. 煤田地质与勘探, 2018, 46(5): 32-36
[13]  卜繁婷, 许天福, 王福刚, 等. 储层温度对CO2矿物封存的影响[J]. 水文地质工程地质, 2014, 41(1): 101-105.
[14]  李晓龙. 深部煤层裂缝特征变化模拟研究[D]: [硕士学位论文]. 西安: 西北大学, 2023.
[15]  杨术刚, 蔡明玉, 张坤峰, 等. CO2水-岩相互作用对CO2地质封存体物性影响研究进展及展望[J]. 油气地质与采收率, 2023, 30(6): 80-91.
[16]  王翰文, 张力为, 梅开元, 等. CO2地质利用与封存环境下钢材腐蚀行为与腐蚀控制措施研究进展[J]. 热力发电, 2024, 53(2): 37-47.
[17]  Xiang, Y., Wang, Z., Li, Z. and Ni, W.D. (2013) Effect of Temperature on Corrosion Behaviour of X70 Steel in High Pressure CO2/SO2/O2/H2O Environments. Corrosion Engineering, Science and Technology, 48, 121-129.
https://doi.org/10.1179/1743278212y.0000000050
[18]  Zhang, Y., Pang, X., Qu, S., Li, X. and Gao, K. (2012) Discussion of the CO2 Corrosion Mechanism between Low Partial Pressure and Supercritical Condition. Corrosion Science, 59, 186-197.
https://doi.org/10.1016/j.corsci.2012.03.006
[19]  高纯良, 李大朋, 张雷, 等. 流速对油管用N80钢CO2腐蚀行为的影响[J]. 腐蚀与防护, 2013, 34(12): 1090-1092, 1097.
[20]  李岩岩, 刘丹, 朱光宇, 等. 超临界CO2环境中温度和流速对N80碳钢腐蚀行为的影响[J]. 表面技术, 2020, 49(3): 35-41.
[21]  Schmitt, G.A. and Mueller, M. (1999) Critical Wall Shear Stresses in CO2 Corrosion of Carbon Steel. CORROSION 99, San Antonio, 25-30 April 1999, NACE-99044.
[22]  戴家生. 浙江废弃矿井现状调查及影响分析[J]. 现代矿业, 2020, 36(6): 216-219.
[23]  袁亮, 姜耀东, 王凯, 等. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报, 2018, 43(1): 14-20.
[24]  袁亮, 张通, 张庆贺, 等. 双碳目标下废弃矿井绿色低碳多能互补体系建设思考[J]. 煤炭学报, 2022, 47(6): 2131-2139.
[25]  何学秋, 田向辉, 宋大钊. 煤层CO2安全封存研究进展与展望[J]. 煤炭科学技术, 2022, 50(1): 212-219.
[26]  王晓桥, 马登龙, 夏锋社, 等. 封储二氧化碳泄漏监测技术的研究进展[J]. 安全与环境工程, 2020, 27(2): 23-34.
[27]  周军平, 鲜学福, 姜永东, 等. 不可采煤层CO2封存的数值模拟[J]. 重庆大学学报, 2011, 34(7): 83-90.
[28]  何学秋, 窦林名, 牟宗龙, 等. 煤岩冲击动力灾害连续监测预警理论与技术[J]. 煤炭学报, 2014, 39(8): 1485-1491.
[29]  丁洋, 陈文彬, 林海飞, 等. 煤矿采空区碳封存CO2泄漏地表扩散规律研究[J]. 西安科技大学学报, 2023, 43(4): 705-714.
[30]  于恩毅, 邸元, 吴辉, 等. CO2地质封存风险分析的多场耦合数值模拟技术综述[J]. 力学学报, 2023, 55(9): 2075-2090.
[31]  李士伦, 汤勇, 段胜才, 等. CO2地质封存源汇匹配及安全性评价进展[J]. 油气藏评价与开发, 2023, 13(3): 269-279.
[32]  王展鹏, 刘琦, 叶航, 等. CO2地质封存泄漏监测技术研究进展[J]. 环境工程, 2023, 41(10): 69-81.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133