全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进的无上下文网络解决拼图问题
Solving Jigsaw Puzzle Problem Based on Improved Context-Free Network

DOI: 10.12677/aam.2024.1312523, PP. 5420-5427

Keywords: 图像恢复,AlexNet,深度学习
Image Restoration
, AlexNet, Deep Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出了利用深度学习技术解决拼图问题的新方法。拼图游戏作为一种跨学科的智力挑战,其复杂性随着碎片数量的增加而指数级增长。本文介绍了一种基于改进AlexNet卷积神经网络架构的无监督学习方法,用于解决自然图像的拼图问题。该方法通过构建一个拼图任务预测网络,提高了模型的性能和泛化能力。实验部分在自制的果蔬数据集上进行,验证了模型在不同复杂度拼图还原任务中的有效性。最后,文章总结了研究成果,并对未来的研究方向提出了展望。
In this paper, we propose new methods for solving jigsaw puzzles using deep learning techniques. As an interdisciplinary intellectual challenge, the complexity of jigsaw puzzles grows exponentially with the number of pieces. This paper introduces an unsupervised learning method based on a modified AlexNet convolutional neural network architecture for solving the jigsaw puzzle problem of natural images. This method improves the performance and generalization ability of the model by constructing a puzzle task prediction network. The experimental part is carried out on the self-made fruit and vegetable dataset, and the effectiveness of the model in puzzle restoration tasks of different complexity is verified. Finally, the paper summarizes the research results and puts forward the future research directions.

References

[1]  陈鲍发, 马中元, 徐芬, 等. 天气雷达风暴跟踪信息拼图技术设计与应用[J]. 气象科学, 2020, 40(6): 838-848.
[2]  周明全, 税午阳, 武仲科, 等. 交互式破碎文物虚拟修复方法[P]. 中国专利, CN201410006146.7. 2024-11-13.
[3]  王克刚. 基于学习优化与信息融合的陶瓷文物碎片分类研究[D]: [博士学位论文]. 西安: 西北大学, 2017.
[4]  袁洁, 周明全, 耿国华, 张雨禾. 基于Morse-Smale拓扑特征的文物碎片拼接算法[J]. 自动化学报, 2018, 44(8): 1486-1495.
[5]  胡继飞. 拼图式合作学习及其在教师培训中的应用[J]. 外国中小学教育, 2009(6): 43-46+57.
[6]  Marande, W. and Burger, G. (2007) Mitochondrial DNA as a Genomic Jigsaw Puzzle. Science, 318, 415-415.
https://doi.org/10.1126/science.1148033
[7]  Freeman, H. and Garder, L. (1964) Apictorial Jigsaw Puzzles: The Computer Solution of a Problem in Pattern Recognition. IEEE Transactions on Electronic Computers, 13, 118-127.
https://doi.org/10.1109/pgec.1964.263781
[8]  Demaine, E.D. and Demaine, M.L. (2007) Jigsaw Puzzles, Edge Matching, and Polyomino Packing: Connections and Complexity. Graphs and Combinatorics, 23, 195-208.
https://doi.org/10.1007/s00373-007-0713-4
[9]  Jin, S.-Y., Lee, S., Azis, N.A. and Choi, H.-J. (2014) Jigsaw Puzzle Image Retrieval via Pairwise Compatibility Measurement. 2014 International Conference on Big Data and Smart Computing (BIGCOMP), Bangkok, 15-17 January 2014, 123-127.
https://doi.org/10.1109/bigcomp.2014.6741421
[10]  Zhi, L., Ge, Q. and Ji, Z. (2009) Image Matching Algorithm Based on Edge Color Used in Automatic Computer Jigsaw Puzzle. 2009 2nd International Symposium on Knowledge Acquisition and Modeling, Wuhan, 30 November-1 December 2009, 269-272.
https://doi.org/10.1109/kam.2009.149
[11]  Le, C. and Li, X. (2019) Jigsawnet: Shredded Image Reassembly Using Convolutional Neural Network and Loop-Based Composition. IEEE Transactions on Image Processing, 28, 4000-4015.
https://doi.org/10.1109/tip.2019.2903298
[12]  Gallagher, A.C. (2012) Jigsaw Puzzles with Pieces of Unknown Orientation. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, 16-21 June 2012, 382-389.
https://doi.org/10.1109/cvpr.2012.6247699
[13]  Noroozi, M. and Favaro, P. (2016) Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles. In: Leibe, B., Matas, J., Sebe, N. and Welling, M., Eds., Computer Vision ECCV 2016, Springer, 69-84.
[14]  Alajlan, N. (2009) Solving Square Jigsaw Puzzles Using Dynamic Programming and the Hungarian Procedure. American Journal of Applied Sciences, 6, 1941-1947.
https://doi.org/10.3844/ajassp.2009.1941.1947

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133