全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于贝叶斯累加回归树模型的溶解氧影响因素分析及预测研究——以长江中游为例
Analysis and Prediction of Factors Affecting Dissolved Oxygen Based on a Bayesian Additive Regression Tree Model—A Case Study of the Middle Reaches of the Yangtze River

DOI: 10.12677/sa.2024.136231, PP. 2382-2395

Keywords: 溶解氧,BART,变量筛选
Dissolved Oxygen
, BART, Variable Filtering

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以长江中游三个河流断面每隔4小时的水质数据和气象指标为研究对象进行溶解氧的影响因素分析和预测研究。首先,通过模拟数据对BARTSVRRFXG模型进行实验对比,分析了BART模型的稳健性优势。其次,运用BART模型变量重要性(变量包含比例)来筛选重要变量,筛选出影响长江中游水质溶解氧浓度的关键变量为pH、水温、电导率、总磷、高锰酸盐指数、露点温度、气温。最后,选择筛选出的最优输入变量组合来构建BARTSVRRFXGB模型来对溶解氧进行预测研究。结果表明,BART模型的预测性能最佳,在100次预测统计中R2RMSEMAEMAPE的中位数(Me)分别为0.936、0.480、0.333、4.36%。
This study focuses on the analysis and prediction of dissolved oxygen (DO) in the middle reaches of the Yangtze River, using water quality data and meteorological indicators measured at three river cross-sections every 4 hours. First, experiments were conducted to compare the performance of four models: BART, SVR, RF, and XGB, using simulated data. The robustness advantage of the BART model was highlighted. Next, the variable importance of the BART model was utilized to select key influencing factors, identifying the critical variables affecting DO concentration in the middle reaches of the Yangtze River. These key variables include pH, water temperature, electrical conductivity, total phosphorus, permanganate index, dew point temperature, and air temperature. Finally, the optimal combination of input variables was selected to build the BART, SVR, RF, and XGB models for DO prediction. The results show that the BART model performs best, with median values of R2, RMSE, MAE, and MAPE of 0.936, 0.480, 0.333, and 4.36%, respectively, from 100 prediction trials.

References

[1]  陈前, 唐文忠, 许妍, 等. 基于溶解氧和耗氧污染物变化的长江流域水质改善过程分析(2008-2018年) [J]. 环境工程学报, 2023, 17(1): 279-287.
[2]  Polonenko, L.M., Hamouda, M.A. and Mohamed, M.M. (2020) Essential Components of Institutional and Social Indicators in Assessing the Sustainability and Resilience of Urban Water Systems: Challenges and Opportunities. Science of The Total Environment, 708, Article ID: 135159.
https://doi.org/10.1016/j.scitotenv.2019.135159
[3]  雷沛, 王超, 张洪, 等. 重庆市重污染次级河流伏牛溪水污染控制与水质改善[J]. 环境工程学报, 2019, 13(1): 95-108.
[4]  张洪, 林超 雷沛, 等. 海河流域河流耗氧污染变化趋势及氧亏分布研究[J]. 环境科学学报, 2015, 35(8): 2324-2335.
[5]  Fan, C. and Kao, S. (2008) Effects of Climate Events Driven Hydrodynamics on Dissolved Oxygen in a Subtropical Deep Reservoir in Taiwan Region. Science of the Total Environment, 393, 326-332.
https://doi.org/10.1016/j.scitotenv.2007.12.018
[6]  Rabalais, N., Cai, W., Carstensen, J., Conley, D., Fry, B., Hu, X., et al. (2014) Eutrophication-Driven Deoxygenation in the Coastal Ocean. Oceanography, 27, 172-183.
https://doi.org/10.5670/oceanog.2014.21
[7]  杨明悦, 毛献忠. 基于变量重要性评分-随机森林的溶解氧预测模型——以深圳湾为例[J]. 中国环境科学, 2022, 42(8): 3876-3881.
[8]  黄燏, 阙思思, 罗晗郁, 等. 长江流域重点断面水质时空变异特征及污染源解析[J]. 环境工程学报, 2023, 17(8): 2468-2483.
[9]  杨春艳, 施择, 焦聪颖, 等. 2013-2020年泸沽湖溶解氧随时间变化规律及主要影响因素分析[J]. 中国环境监测, 2022, 38(4): 139-145.
[10]  陈湛峰, 李晓芳. 基于注意力机制优化的BiLSTM珠江口水质预测模型[J]. 环境科学, 2024, 45(6): 3205-3213.
[11]  郝玉莹, 赵林, 孙同, 乔治. 基于RF-LSTM的地表水体水质预测[J]. 水资源与水工程学报, 2021, 32(6): 42-48.
[12]  Bleich, J., Kapelner, A., George, E.I. and Jensen, S.T. (2014) Variable Selection for BART: An Application to Gene Regulation. The Annals of Applied Statistics, 8, 1750-1781.
https://doi.org/10.1214/14-aoas755
[13]  李玲玲, 李云梅, 吕恒, 等. 基于决策树的城市黑臭水体遥感分级[J]. 环境科学, 2020, 41(11): 5060-5072.
[14]  Shi, Z.B. and Zou, Z.H. (2014) Applied Study of ARIMA Model Based on Wavelet Analysis on Water Quality Prediction. Chinese Journal of Environmental Engineering, 8, 4550-4554.
[15]  李晓瑛, 王华, 王屹晴, 等. 基于机器学习的长江口溶解氧预测模型与评估[J]. 环境科学, 2024, 45(12): 7123-7133.
[16]  Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.
https://doi.org/10.1023/a:1010933404324
[17]  方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3): 32-38.
[18]  Byun, H. and Lee, S. (2002) Applications of Support Vector Machines for Pattern Recognition: A Survey. In: Lee, S.-W. and Verri, A., Eds., Pattern Recognition with Support Vector Machines, Springer, 213-236.
https://doi.org/10.1007/3-540-45665-1_17
[19]  Chen, T. and Guestrin, C. (2016) XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13-17 August 2016, 785-794.
https://doi.org/10.1145/2939672.2939785
[20]  Chipman, H.A., George, E.I. and McCulloch, R.E. (2010) BART: Bayesian Additive Regression Trees. The Annals of Applied Statistics, 4, 266-298.
https://doi.org/10.1214/09-aoas285
[21]  Friedman, J.H. (1991) Multivariate Adaptive Regression Splines. The Annals of Statistics, 19, 1-67.
https://doi.org/10.1214/aos/1176347963
[22]  Vanden Heuvel, D., Wu, J. and Wang, Y. (2023) Robust Regression for Electricity Demand Forecasting against Cyberattacks. International Journal of Forecasting, 39, 1573-1592.
https://doi.org/10.1016/j.ijforecast.2022.10.004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133