|
基于网络药理学分析探讨胃糜舒治疗慢性萎缩性胃炎肝胃不和型的相关作用机制
|
Abstract:
目的:基于网络药理学分析探讨胃糜舒治疗慢性萎缩性胃炎肝胃不和型的相关作用机制,为后续实验提供参考。方法:通过中药系统药理数据库与分析平台(Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, TCMSP)和Herb (http://herb.ac.cn/)进行药物的活性成分的筛选,根据药代动力学特征ADME,将化合物SMLIE号导入SwissTargetPrediction数据库筛选药物的作用靶点。通过GeneCards、OMIM数据库,得到目标靶点基因,利用String平台进行蛋白质相互作用分析,构建PPI网络互作图。采用DAVID数据库平台分析“药物–成分–靶点”及其参与的生物过程及通路。结果:胃糜舒的核心活性成分为豆甾醇、异鼠李素、山萘酚、槲皮素、β-谷甾醇,主要作用于IL-17信号通路、TNF信号通路、p53信号通路、NF-κB信号通路和JAK/STAT信号通路。结论:本研究对胃糜舒治疗慢性萎缩性胃炎肝胃不和型的作用机制进行了初步网络验证,为后续实验研究提供参考。
Objective: This paper aims to investigate the mechanism of action of Weimishu in the treatment of chronic atrophic gastritis with hepatogastric disharmony based on network pharmacological analysis, so as to provide reference for follow-up experiments. Methods: The active ingredients of the drugs were screened through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Herb (http://herb.ac.cn/), and the compounds SMLIE were selected according to the pharmacokinetic characteristics of ADME The target of action of the drug was screened into the SwissTargetPrediction database. Through the GeneCards and OMIM databases, the target genes were obtained, and the String platform was used for protein-protein interaction analysis to construct the PPI network interaction map. The DAVID database platform was used to analyze the “drug-component-target” and the biological processes and pathways involved in it. Results: The core active components of Gastric Misot were stigmasterol, isorhamnetin, kaemphanol, quercetin and β-sitosterol, which mainly acted on IL-17 signaling pathway, TNF signaling pathway, p53 signaling pathway, NF-κB signaling pathway and JAK/STAT signaling pathway. Conclusion: This study preliminarily validated the mechanism of action of chylosol in the treatment of chronic atrophic gastritis with hepatogastric disharmony, and provided a reference for follow-up experimental research.
[1] | Wang, Y., Shen, L., Yun, T., Yang, B., Zhu, C. and Wang, S. (2021) Histopathological Classification and Follow-up Analysis of Chronic Atrophic Gastritis. World Journal of Clinical Cases, 9, 3838-3847. https://doi.org/10.12998/wjcc.v9.i16.3838 |
[2] | Yang, H., Zhou, X. and Hu, B. (2022) The ‘Reversibility’ of Chronic Atrophic Gastritis after the Eradication of Helicobacter pylori. Postgraduate Medicine, 134, 474-479. https://doi.org/10.1080/00325481.2022.2063604 |
[3] | Pimentel-Nunes, P., Libânio, D., Marcos-Pinto, R., Areia, M., Leja, M., Esposito, G., et al. (2019) Management of Epithelial Precancerous Conditions and Lesions in the Stomach (MAPS II): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG), European Society of Pathology (ESP), and Sociedade Portuguesa de Endoscopia Digestiva (SPED) Guideline Update 2019. Endoscopy, 51, 365-388. https://doi.org/10.1055/a-0859-1883 |
[4] | den Hollander, W.J. and Kuipers, E.J. (2012) Current Pharmacotherapy Options for Gastritis. Expert Opinion on Pharmacotherapy, 13, 2625-2636. https://doi.org/10.1517/14656566.2012.747510 |
[5] | Yang, L., Hu, Z., Zhu, J. and Fei, B. (2020) Effects of Weifuchun Tablet for Chronic Atrophic Gastritis: A Protocol for Systematic Review and Meta-Analysis. Medicine, 99, e20374. https://doi.org/10.1097/md.0000000000020374 |
[6] | 许文文, 李军茹, 崔娴淑. 自拟胃糜舒方加减治疗肝郁气滞型慢性糜烂性胃炎30例[J]. 中国民间疗法, 2018, 26(6): 32-33. |
[7] | Kracht, M., Müller-Ladner, U. and Schmitz, M.L. (2020) Mutual Regulation of Metabolic Processes and Proinflammatory NF-κB Signaling. Journal of Allergy and Clinical Immunology, 146, 694-705. https://doi.org/10.1016/j.jaci.2020.07.027 |
[8] | Barnabei, L., Laplantine, E., Mbongo, W., Rieux-Laucat, F. and Weil, R. (2021) NF-κB: At the Borders of Autoimmunity and Inflammation. Frontiers in Immunology, 12, Article 716469. https://doi.org/10.3389/fimmu.2021.716469 |
[9] | Zhang, Y., Zhang, Y., Zhao, Y., Wu, W., Meng, W., Zhou, Y., et al. (2022) Protection against Ulcerative Colitis and Colorectal Cancer by Evodiamine via Anti-Inflammatory Effects. Molecular Medicine Reports, 25, Article No. 188. https://doi.org/10.3892/mmr.2022.12704 |
[10] | Soleimani, A., Rahmani, F., Ferns, G.A., Ryzhikov, M., Avan, A. and Hassanian, S.M. (2020) Role of the NF-κB Signaling Pathway in the Pathogenesis of Colorectal Cancer. Gene, 726, Article 144132. https://doi.org/10.1016/j.gene.2019.144132 |
[11] | Liu, T., Duo, L. and Duan, P. (2018) Ginsenoside Rg3 Sensitizes Colorectal Cancer to Radiotherapy through Downregulation of Proliferative and Angiogenic Biomarkers. Evidence-Based Complementary and Alternative Medicine, 2018, Article 1580427. https://doi.org/10.1155/2018/1580427 |
[12] | 程海波, 沈卫星. 癌毒病机理论与炎癌转变[J]. 中国中西医结合杂志, 2015, 35(2): 243-246. |
[13] | 彭孟凡, 李鸣, 苗晋鑫, 等. 基于“炎-癌转化”探讨炎症对肿瘤的影响及中医药干预作用[J]. 中国实验方剂学杂志, 2022, 28(22): 196-204. |
[14] | 徐明瑶, 黎丽群, 刘鑫, 沈智文, 张晓宁, 黄静, 尹嘉琪, 刘柱, 谢胜. NF-κB信号通路在“反流性食管炎-食管癌”中的作用及中药干预研究进展[J]. 中国实验方剂学杂志, 2024, 30(2): 221-233. |
[15] | Khanna, P., Chua, P.J., Bay, B.H. and Baeg, G.H. (2015) The JAK/STAT Signaling Cascade in Gastric Carcinoma (review). International Journal of Oncology, 47, 1617-1626. https://doi.org/10.3892/ijo.2015.3160 |
[16] | 从禹, 王亚杰, 国嵩, 郭宇, 魏玮. JAK/STAT通路在慢性萎缩性胃炎中的意义[J]. 临床医药文献电子杂志, 2019, 6(78): 192. |
[17] | Tye, H., Kennedy, C.L., Najdovska, M., McLeod, L., McCormack, W., Hughes, N., et al. (2012) STAT3-Driven Upregulation of TLR2 Promotes Gastric Tumorigenesis Independent of Tumor Inflammation. Cancer Cell, 22, 466-478. https://doi.org/10.1016/j.ccr.2012.08.010 |
[18] | Kipkeeva, F., Muzaffarova, T., Korotaeva, A., Nikulin, M., Grishina, K., Mansorunov, D., et al. (2020) MicroRNA in Gastric Cancer Development: Mechanisms and Biomarkers. Diagnostics, 10, Article 891. https://doi.org/10.3390/diagnostics10110891 |