全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sirtuins家族对结直肠癌的生物学功能及预后的研究进展
Research Progress of Biological Function and Prognosis of Colorectal Cancer in Sirtuins Family

DOI: 10.12677/jcpm.2024.34257, PP. 1805-1817

Keywords: 结直肠癌(CRC),Sirtuins蛋白家族,生物学功能,预后
Colorectal Cancer (CRC)
, Sirtuins Protein Family, Biological Function, Prognosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sirtuins蛋白家族具有ADP-核糖基转移酶活性和NAD+依赖性的组蛋白去乙酰基转移酶等多种酶活性,其家族包括Sirtuin1-7,是有名的长寿蛋白大家族,具有控制能量代谢、DNA修复、细胞活性、组织再生、炎症、神经元信号传递等多种生物学功能,同时在结直肠癌发生发展过程中作为不可替代的调控因素之一。Sirtuin1-7属于同一家族,但Sirtuin1-7表达对结肠癌的发生发展却有不同的影响,与患者预后也存在一定的相关性。本文综述了Sirtuins家族成员概述、在结直肠癌发生发展过程中所表达的生物学功能、作用机制及预后。
Sirtuins protein family has various enzyme activities such as ADP-ribosyl transferase activity and NAD+ dependent histone deacetyl transferase activity. Its family includes Sirtuin1-7, which is a well-known family of long-lived proteins. It has various biological functions such as controlling energy metabolism, DNA repair, cell activity, tissue regeneration, inflammation, neuronal signal transmission, etc., and serves as one of the irreplaceable regulatory factors in the occurrence and development of colorectal cancer. Sirtuin1-7 belongs to the same family, but the expression of Sirtuin1-7 has different effects on the occurrence and development of colon cancer, and has a certain correlation with the prognosis of patients. In this review, Sirtuins family members, biological functions, mechanisms of action and prognosis of colorectal cancer were summarized.

References

[1]  Dienstmann, R., Vermeulen, L., Guinney, J., Kopetz, S., Tejpar, S. and Tabernero, J. (2017) Consensus Molecular Subtypes and the Evolution of Precision Medicine in Colorectal Cancer. Nature Reviews Cancer, 17, 79-92.
https://doi.org/10.1038/nrc.2016.126
[2]  Ye, X., Li, M., Hou, T., Gao, T., Zhu, W. and Yang, Y. (2016) Sirtuins in Glucose and Lipid Metabolism. Oncotarget, 8, 1845-1859.
https://doi.org/10.18632/oncotarget.12157
[3]  Shore, D., Squire, M. and Nasmyth, K.A. (1984) Characterization of Two Genes Required for the Position-Effect Control of Yeast Mating-Type Genes. The EMBO Journal, 3, 2817-2823.
https://doi.org/10.1002/j.1460-2075.1984.tb02214.x
[4]  Preyat, N. and Leo, O. (2013) Sirtuin Deacylases: A Molecular Link between Metabolism and Immunity. Journal of Leukocyte Biology, 93, 669-680.
https://doi.org/10.1189/jlb.1112557
[5]  Satoh, A., Brace, C.S., Ben-Josef, G., West, T., Wozniak, D.F., Holtzman, D.M., et al. (2010) SIRT1 Promotes the Central Adaptive Response to Diet Restriction through Activation of the Dorsomedial and Lateral Nuclei of the Hypothalamus. The Journal of Neuroscience, 30, 10220-10232.
https://doi.org/10.1523/jneurosci.1385-10.2010
[6]  Michishita, E., Park, J.Y., Burneskis, J.M., Barrett, J.C. and Horikawa, I. (2005) Evolutionarily Conserved and Nonconserved Cellular Localizations and Functions of Human SIRT Proteins. Molecular Biology of the Cell, 16, 4623-4635.
https://doi.org/10.1091/mbc.e05-01-0033
[7]  Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K. and Horio, Y. (2007) Nucleocytoplasmic Shuttling of the NAD+-Dependent Histone Deacetylase SIRT1. Journal of Biological Chemistry, 282, 6823-6832.
https://doi.org/10.1074/jbc.m609554200
[8]  Alves-Fernandes, D.K. and Jasiulionis, M.G. (2019) The Role of SIRT1 on DNA Damage Response and Epigenetic Alterations in Cancer. International Journal of Molecular Sciences, 20, Article 3153.
https://doi.org/10.3390/ijms20133153
[9]  Kitada, M., Ogura, Y., Monno, I. and Koya, D. (2019) Sirtuins and Type 2 Diabetes: Role in Inflammation, Oxidative Stress, and Mitochondrial Function. Frontiers in Endocrinology, 10, Article 187.
https://doi.org/10.3389/fendo.2019.00187
[10]  Fujita, Y. and Yamashita, T. (2018) Sirtuins in Neuroendocrine Regulation and Neurological Diseases. Frontiers in Neuroscience, 12, Article 778.
https://doi.org/10.3389/fnins.2018.00778
[11]  Yang, S., Yang, G., Wang, X., Xiang, J., Kang, L. and Liang, Z. (2023) SIRT2 Alleviated Renal Fibrosis by Deacetylating SMAD2 and SMAD3 in Renal Tubular Epithelial Cells. Cell Death & Disease, 14, Article No. 646.
https://doi.org/10.1038/s41419-023-06169-1
[12]  Bai, N., Li, N., Cheng, R., Guan, Y., Zhao, X., Song, Z., et al. (2022) Inhibition of SIRT2 Promotes APP Acetylation and Ameliorates Cognitive Impairment in APP/PS1 Transgenic Mice. Cell Reports, 40, Article 111062.
https://doi.org/10.1016/j.celrep.2022.111062
[13]  Duran-Castells, C., Llano, A., Kawana-Tachikawa, A., Prats, A., Martinez-Zalacain, I., Kobayashi-Ishihara, M., et al. (2023) Sirtuin-2, NAD-Dependent Deacetylase, Is a New Potential Therapeutic Target for HIV-1 Infection and HIV-Related Neurological Dysfunction. Journal of Virology, 97, e01655-22.
https://doi.org/10.1128/jvi.01655-22
[14]  He, M., Chiang, H., Luo, H., Zheng, Z., Qiao, Q., Wang, L., et al. (2020) An Acetylation Switch of the NLRP3 Inflammasome Regulates Aging-Associated Chronic Inflammation and Insulin Resistance. Cell Metabolism, 31, 580-591.E5.
https://doi.org/10.1016/j.cmet.2020.01.009
[15]  Nakamura, Y., Ogura, M., Tanaka, D. and Inagaki, N. (2008) Localization of Mouse Mitochondrial SIRT Proteins: Shift of SIRT3 to Nucleus by Co-Expression with SIRT5. Biochemical and Biophysical Research Communications, 366, 174-179.
https://doi.org/10.1016/j.bbrc.2007.11.122
[16]  Xin, T. and Lu, C. (2020) SIRT3 Activates AMPK-Related Mitochondrial Biogenesis and Ameliorates Sepsis-Induced Myocardial Injury. Aging, 12, 16224-16237.
https://doi.org/10.18632/aging.103644
[17]  Gao, J., Feng, Z., Wang, X., Zeng, M., Liu, J., Han, S., et al. (2017) SIRT3/SOD2 Maintains Osteoblast Differentiation and Bone Formation by Regulating Mitochondrial Stress. Cell Death & Differentiation, 25, 229-240.
https://doi.org/10.1038/cdd.2017.144
[18]  Mishra, Y. and Kaundal, R.K. (2023) Role of SIRT3 in Mitochondrial Biology and Its Therapeutic Implications in Neurodegenerative Disorders. Drug Discovery Today, 28, Article 103583.
https://doi.org/10.1016/j.drudis.2023.103583
[19]  Wood, J.G., Schwer, B., Wickremesinghe, P.C., Hartnett, D.A., Burhenn, L., Garcia, M., et al. (2018) SIRT4 Is a Mitochondrial Regulator of Metabolism and Lifespan in Drosophila melanogaster. Proceedings of the National Academy of Sciences, 115, 1564-1569.
https://doi.org/10.1073/pnas.1720673115
[20]  Hu, Q., Qin, Y., Ji, S., Xu, W., Liu, W., Sun, Q., et al. (2019) UHRF1 Promotes Aerobic Glycolysis and Proliferation via Suppression of SIRT4 in Pancreatic Cancer. Cancer Letters, 452, 226-236.
https://doi.org/10.1016/j.canlet.2019.03.024
[21]  Huang, G., Cui, F., Yu, F., Lu, H., Zhang, M., Tang, H., et al. (2015) Sirtuin-4 (SIRT4) Is Downregulated and Associated with Some Clinicopathological Features in Gastric Adenocarcinoma. Biomedicine & Pharmacotherapy, 72, 135-139.
https://doi.org/10.1016/j.biopha.2015.04.013
[22]  Li, J., Zhao, M., Fan, W., et al. (2024) SIRT4 Is Associated with Microvascular Infiltration, Immune Cell Infiltration, and Epithelial Mesenchymal Transition in Hepatocellular Carcinoma. Histology and Histopathology.
https://doi.org/10.14670/HH-18-794
[23]  Garber, M.E., Troyanskaya, O.G., Schluens, K., Petersen, S., Thaesler, Z., Pacyna-Gengelbach, M., et al. (2001) Diversity of Gene Expression in Adenocarcinoma of the Lung. Proceedings of the National Academy of Sciences, 98, 13784-13789.
https://doi.org/10.1073/pnas.241500798
[24]  Xie, L., Li, C., Wang, C., Wu, Z., Wang, C., Chen, C., et al. (2024) Aspirin‐Mediated Acetylation of SIRT1 Maintains Intestinal Immune Homeostasis. Advanced Science, 11, 2306378.
https://doi.org/10.1002/advs.202306378
[25]  Jung, Y.R., Kim, E.J., Choi, H.J., Park, J., Kim, H., Lee, Y., et al. (2015) Aspirin Targets SIRT1 and AMPK to Induce Senescence of Colorectal Carcinoma Cells. Molecular Pharmacology, 88, 708-719.
https://doi.org/10.1124/mol.115.098616
[26]  Kabra, N., Li, Z., Chen, L., Li, B., Zhang, X., Wang, C., et al. (2009) SIRT1 Is an Inhibitor of Proliferation and Tumor Formation in Colon Cancer. Journal of Biological Chemistry, 284, 18210-18217.
https://doi.org/10.1074/jbc.m109.000034
[27]  Wang, X., Jiang, Y., Ye, W., Shao, C., Xie, J. and Li, X. (2023) SIRT1 Promotes the Progression and Chemoresistance of Colorectal Cancer through the p53/miR-101/KPNA3 Axis. Cancer Biology & Therapy, 24, Article 2235770.
https://doi.org/10.1080/15384047.2023.2235770
[28]  Wang, X., Liu, S., Xu, B., Liu, Y., Kong, P., Li, C., et al. (2021) Circ-SIRT1 Promotes Colorectal Cancer Proliferation and EMT by Recruiting and Binding to eiF4A3. Analytical Cellular Pathology, 2021, Article 5739769.
https://doi.org/10.1155/2021/5739769
[29]  Lee, Y., Kim, S., Fang, X., Song, N., Kim, D., Suh, J., et al. (2022) JNK‐Mediated Ser27 Phosphorylation and Stabilization of SIRT1 Promote Growth and Progression of Colon Cancer through Deacetylation‐Dependent Activation of Snail. Molecular Oncology, 16, 1555-1571.
https://doi.org/10.1002/1878-0261.13143
[30]  García-Martínez, J.M., Chocarro-Calvo, A., Martínez-Useros, J., Fernández-Aceñero, M.J., Fiuza, M.C., Cáceres-Rentero, J., et al. (2023) Vitamin D Induces SIRT1 Activation through K610 Deacetylation in Colon Cancer. eLife, 12, RP86913.
https://doi.org/10.7554/elife.86913
[31]  Jung, J., Lee, Y., Fang, X., Kim, S., Kim, S.H., Kim, D., et al. (2021) IL-1β Induces Expression of Proinflammatory Cytokines and Migration of Human Colon Cancer Cells through Upregulation of SIRT1. Archives of Biochemistry and Biophysics, 703, Article 108847.
https://doi.org/10.1016/j.abb.2021.108847
[32]  Simmons, G., Pruitt, W. and Pruitt, K. (2015) Diverse Roles of SIRT1 in Cancer Biology and Lipid Metabolism. International Journal of Molecular Sciences, 16, 950-965.
https://doi.org/10.3390/ijms16010950
[33]  Kim, H., Vassilopoulos, A., Wang, R., Lahusen, T., Xiao, Z., Xu, X., et al. (2011) SIRT2 Maintains Genome Integrity and Suppresses Tumorigenesis through Regulating APC/C Activity. Cancer Cell, 20, 487-499.
https://doi.org/10.1016/j.ccr.2011.09.004
[34]  Maxwell, M.M., Tomkinson, E.M., Nobles, J., Wizeman, J.W., Amore, A.M., Quinti, L., et al. (2011) The Sirtuin 2 Microtubule Deacetylase Is an Abundant Neuronal Protein That Accumulates in the Aging CNS. Human Molecular Genetics, 20, 3986-3996.
https://doi.org/10.1093/hmg/ddr326
[35]  Wang, B., Ye, Y., Yang, X., Liu, B., Wang, Z., Chen, S., et al. (2020) Sirt2‐Dependent IDH1 Deacetylation Inhibits Colorectal Cancer and Liver Metastases. EMBO reports, 21, e48183.
https://doi.org/10.15252/embr.201948183
[36]  Li, J., Zheng, S., Cheng, T., Li, Y., Mai, X., Jiang, G., et al. (2022) Decylubiquinone Inhibits Colorectal Cancer Growth through Upregulating Sirtuin2. Frontiers in Pharmacology, 12, Article 804265.
https://doi.org/10.3389/fphar.2021.804265
[37]  Zhang, L., Zhan, L., Jin, Y., Min, Z., Wei, C., Wang, Q., et al. (2017) SIRT2 Mediated Antitumor Effects of Shikonin on Metastatic Colorectal Cancer. European Journal of Pharmacology, 797, 1-8.
https://doi.org/10.1016/j.ejphar.2017.01.008
[38]  Zhao, Y., Yu, T., Zhang, N., Chen, J., Zhang, P., Li, S., et al. (2019) Nuclear E-Cadherin Acetylation Promotes Colorectal Tumorigenesis via Enhancing β-Catenin Activity. Molecular Cancer Research, 17, 655-665.
https://doi.org/10.1158/1541-7786.mcr-18-0637
[39]  Hu, F., Sun, X., Li, G., Wu, Q., Chen, Y., Yang, X., et al. (2018) Inhibition of SIRT2 Limits Tumour Angiogenesis via Inactivation of the STAT3/VEGFA Signalling Pathway. Cell Death & Disease, 10, Article No. 9.
https://doi.org/10.1038/s41419-018-1260-z
[40]  Jiang, B., Ke, C., Zhou, H., Xia, T., Xie, X. and Xu, H. (2023) Sirtuin 2 Up‐Regulation Suppresses the Anti‐Tumour Activity of Exhausted Natural Killer Cells in Mesenteric Lymph Nodes in Murine Colorectal Carcinoma. Scandinavian Journal of Immunology, 98, e13317.
https://doi.org/10.1111/sji.13317
[41]  Yang, M.H., Laurent, G., Bause, A.S., Spang, R., German, N., Haigis, M.C., et al. (2013) HDAC6 and SIRT2 Regulate the Acetylation State and Oncogenic Activity of Mutant K-RAS. Molecular Cancer Research, 11, 1072-1077.
https://doi.org/10.1158/1541-7786.mcr-13-0040-t
[42]  Bellizzi, D., Rose, G., Cavalcante, P., Covello, G., Dato, S., De Rango, F., et al. (2005) A Novel VNTR Enhancer within the SIRT3 Gene, a Human Homologue of SIR2, Is Associated with Survival at Oldest Ages. Genomics, 85, 258-263.
https://doi.org/10.1016/j.ygeno.2004.11.003
[43]  Sundaresan, N.R., Samant, S.A., Pillai, V.B., Rajamohan, S.B. and Gupta, M.P. (2008) SIRT3 Is a Stress-Responsive Deacetylase in Cardiomyocytes That Protects Cells from Stress-Mediated Cell Death by Deacetylation of Ku70. Molecular and Cellular Biology, 28, 6384-6401.
https://doi.org/10.1128/mcb.00426-08
[44]  Li, T., Fan, L., Jia, Y., Xu, C., Guo, W., Wang, Y., et al. (2024) Colorectal Cancer Cells with Stably Expressed SIRT3 Demonstrate Proliferating Retardation by Wnt/β‐Catenin Cascade Inactivation. Clinical and Experimental Pharmacology and Physiology, 51, e13856.
https://doi.org/10.1111/1440-1681.13856
[45]  Mou, Y., Chen, Y., Fan, Z., Ye, L., Hu, B., Han, B., et al. (2024) Discovery of a Novel Small-Molecule Activator of SIRT3 That Inhibits Cell Proliferation and Migration by Apoptosis and Autophagy-Dependent Cell Death Pathways in Colorectal Cancer. Bioorganic Chemistry, 146, Article 107327.
https://doi.org/10.1016/j.bioorg.2024.107327
[46]  Zuo, Z., He, L., Duan, X., Peng, Z. and Han, J. (2022) Glycyrrhizic Acid Exhibits Strong Anticancer Activity in Colorectal Cancer Cells via SIRT3 Inhibition. Bioengineered, 13, 2720-2731.
https://doi.org/10.1080/21655979.2021.2001925
[47]  Zhang, Y., Wang, X., Zhou, M., Kang, C., Lang, H., Chen, M., et al. (2018) Crosstalk between Gut Microbiota and Sirtuin-3 in Colonic Inflammation and Tumorigenesis. Experimental & Molecular Medicine, 50, 1-11.
https://doi.org/10.1038/s12276-017-0002-0
[48]  Wang, Y., Sun, X., Ji, K., Du, L., Xu, C., He, N., et al. (2018) RETRACTED: SIRT3-Mediated Mitochondrial Fission Regulates the Colorectal Cancer Stress Response by Modulating the AKT/PTEN Signalling Pathway. Biomedicine & Pharmacotherapy, 105, 1172-1182.
https://doi.org/10.1016/j.biopha.2018.06.071
[49]  Wei, Z., Song, J., Wang, G., Cui, X., Zheng, J., Tang, Y., et al. (2018) Deacetylation of Serine Hydroxymethyl-Transferase 2 by SIRT3 Promotes Colorectal Carcinogenesis. Nature Communications, 9, Article No. 4468.
https://doi.org/10.1038/s41467-018-06812-y
[50]  Gan, L., Li, Q., Nie, W., Zhang, Y., Jiang, H., Tan, C., et al. (2023) Prox1-Mediated Epigenetic Silencing of SIRT3 Contributes to Proliferation and Glucose Metabolism in Colorectal Cancer. International Journal of Biological Sciences, 19, 50-65.
https://doi.org/10.7150/ijbs.73530
[51]  He, J., Shangguan, X., Zhou, W., Cao, Y., Zheng, Q., Tu, J., et al. (2021) Glucose Limitation Activates AMPK Coupled SENP1-SIRT3 Signalling in Mitochondria for T Cell Memory Development. Nature Communications, 12, Article No. 4371.
https://doi.org/10.1038/s41467-021-24619-2
[52]  D’Onofrio, N., Martino, E., Balestrieri, A., Mele, L., Neglia, G., Balestrieri, M.L., et al. (2021) SIRT3 and Metabolic Reprogramming Mediate the Antiproliferative Effects of Whey in Human Colon Cancer Cells. Cancers, 13, Article 5196.
https://doi.org/10.3390/cancers13205196
[53]  Torrens-Mas, M., Hernández-López, R., Pons, D., Roca, P., Oliver, J. and Sastre-Serra, J. (2019) Sirtuin 3 Silencing Impairs Mitochondrial Biogenesis and Metabolism in Colon Cancer Cells. American Journal of Physiology-Cell Physiology, 317, C398-C404.
https://doi.org/10.1152/ajpcell.00112.2019
[54]  Kumar, S. and Lombard, D.B. (2015) Mitochondrial Sirtuins and Their Relationships with Metabolic Disease and Cancer. Antioxidants & Redox Signaling, 22, 1060-1077.
https://doi.org/10.1089/ars.2014.6213
[55]  Miyo, M., Yamamoto, H., Konno, M., Colvin, H., Nishida, N., Koseki, J., et al. (2015) Tumour-Suppressive Function of SIRT4 in Human Colorectal Cancer. British Journal of Cancer, 113, 492-499.
https://doi.org/10.1038/bjc.2015.226
[56]  Huang, G., Cheng, J., Yu, F., Liu, X., Yuan, C., Liu, C., et al. (2016) Clinical and Therapeutic Significance of Sirtuin-4 Expression in Colorectal Cancer. Oncology Reports, 35, 2801-2810.
https://doi.org/10.3892/or.2016.4685
[57]  Cui, Y., Bai, Y., Yang, J., Yao, Y., Zhang, C., Liu, C., et al. (2020) SIRT4 Is the Molecular Switch Mediating Cellular Proliferation in Colorectal Cancer through GLS Mediated Activation of AKT/GSK3β/CyclinD1 Pathway. Carcinogenesis, 42, 481-492.
https://doi.org/10.1093/carcin/bgaa134
[58]  Deng, J., Wang, H., Liang, Y., Zhao, L., Li, Y., Yan, Y., et al. (2023) MiR-15a-5p Enhances the Malignant Phenotypes of Colorectal Cancer Cells through the STAT3/TWIST1 and PTEN/AKT Signaling Pathways by Targeting SIRT4. Cellular Signalling, 101, Article 110517.
https://doi.org/10.1016/j.cellsig.2022.110517
[59]  Zhu, Y., Wang, G., Li, X., Wang, T., Weng, M. and Zhang, Y. (2018) Knockout of SIRT4 Decreases Chemosensitivity to 5-FU in Colorectal Cancer Cells. Oncology Letters, 16, 1675-1681.
https://doi.org/10.3892/ol.2018.8850
[60]  Shi, L., Yan, H., An, S., Shen, M., Jia, W., Zhang, R., et al. (2018) SIRT5‐Mediated Deacetylation of LDHB Promotes Autophagy and Tumorigenesis in Colorectal Cancer. Molecular Oncology, 13, 358-375.
https://doi.org/10.1002/1878-0261.12408
[61]  Teng, P., Cui, K., Yao, S., Fei, B., Ling, F., Li, C., et al. (2023) SIRT5-Mediated ME2 Desuccinylation Promotes Cancer Growth by Enhancing Mitochondrial Respiration. Cell Death & Differentiation, 31, 65-77.
https://doi.org/10.1038/s41418-023-01240-y
[62]  Ren, M., Yang, X., Bie, J., Wang, Z., Liu, M., Li, Y., et al. (2020) Citrate Synthase Desuccinylation by SIRT5 Promotes Colon Cancer Cell Proliferation and Migration. Biological Chemistry, 401, 1031-1039.
https://doi.org/10.1515/hsz-2020-0118
[63]  Yang, X., Wang, Z., Li, X., Liu, B., Liu, M., Liu, L., et al. (2018) SHMT2 Desuccinylation by SIRT5 Drives Cancer Cell Proliferation. Cancer Research, 78, 372-386.
https://doi.org/10.1158/0008-5472.can-17-1912
[64]  Wang, K., Hu, Z., Zhang, C., Yang, L., Feng, L., Yang, P., et al. (2020) SIRT5 Contributes to Colorectal Cancer Growth by Regulating T Cell Activity. Journal of Immunology Research, 2020, Article 3792409.
https://doi.org/10.1155/2020/3792409
[65]  Klein, M.A. and Denu, J.M. (2020) Biological and Catalytic Functions of Sirtuin 6 as Targets for Small-Molecule Modulators. Journal of Biological Chemistry, 295, 11021-11041.
https://doi.org/10.1074/jbc.rev120.011438
[66]  Zhu, Y., Gu, L., Lin, X., Liu, C., Lu, B., Cui, K., et al. (2020) Dynamic Regulation of ME1 Phosphorylation and Acetylation Affects Lipid Metabolism and Colorectal Tumorigenesis. Molecular Cell, 77, 138-149.E5.
https://doi.org/10.1016/j.molcel.2019.10.015
[67]  Zhang, Y., Nie, L., Xu, K., Fu, Y., Zhong, J., Gu, K., et al. (2019) SIRT6, a Novel Direct Transcriptional Target of FoxO3a, Mediates Colon Cancer Therapy. Theranostics, 9, 2380-2394.
https://doi.org/10.7150/thno.29724
[68]  Liu, W., Wu, M., Du, H., Shi, X., Zhang, T. and Li, J. (2018) SIRT6 Inhibits Colorectal Cancer Stem Cell Proliferation by Targeting CDC25A. Oncology Letters, 15, 5368-5374.
https://doi.org/10.3892/ol.2018.7989
[69]  Shang, J., Zhu, Z., Chen, Y., Song, J., Huang, Y., Song, K., et al. (2020) Small-Molecule Activating SIRT6 Elicits Therapeutic Effects and Synergistically Promotes Anti-Tumor Activity of Vitamin D3 in Colorectal Cancer. Theranostics, 10, 5845-5864.
https://doi.org/10.7150/thno.44043
[70]  Wang, S., Zhang, Z. and Gao, Q. (2021) Transfer of MicroRNA-25 by Colorectal Cancer Cell-Derived Extracellular Vesicles Facilitates Colorectal Cancer Development and Metastasis. Molecular Therapy—Nucleic Acids, 23, 552-564.
https://doi.org/10.1016/j.omtn.2020.11.018
[71]  Tian, J. and Yuan, L. (2018) Sirtuin 6 Inhibits Colon Cancer Progression by Modulating PTEN/AKT Signaling. Biomedicine & Pharmacotherapy, 106, 109-116.
https://doi.org/10.1016/j.biopha.2018.06.070
[72]  Lin, Z., Yang, H., Tan, C., Li, J., Liu, Z., Quan, Q., et al. (2013) USP10 Antagonizes c-Myc Transcriptional Activation through SIRT6 Stabilization to Suppress Tumor Formation. Cell Reports, 5, 1639-1649.
https://doi.org/10.1016/j.celrep.2013.11.029
[73]  Xiao, F., Hu, B., Si, Z., Yang, H. and Xie, J. (2023) Sirtuin 6 Is a Negative Regulator of the Anti-Tumor Function of Natural Killer Cells in Murine Inflammatory Colorectal Cancer. Molecular Immunology, 158, 68-78.
https://doi.org/10.1016/j.molimm.2023.04.011
[74]  Wu, X., Wang, S., Zhao, X., Lai, S., Yuan, Z., Zhan, Y., et al. (2022) Clinicopathological and Prognostic Value of SIRT6 in Patients with Solid Tumors: A Meta-Analysis and TCGA Data Review. Cancer Cell International, 22, Article No. 84.
https://doi.org/10.1186/s12935-022-02511-3
[75]  Vazquez, B.N., Thackray, J.K., Simonet, N.G., Kane‐Goldsmith, N., Martinez‐Redondo, P., Nguyen, T., et al. (2016) SIRT 7 Promotes Genome Integrity and Modulates Non‐Homologous End Joining DNA Repair. The EMBO Journal, 35, 1488-1503.
https://doi.org/10.15252/embj.201593499
[76]  Lagunas-Rangel, F.A. (2022) SIRT7 in the Aging Process. Cellular and Molecular Life Sciences, 79, Article No. 297.
https://doi.org/10.1007/s00018-022-04342-x
[77]  Li, L., Dong, Z., Yang, J., et al. (2019) Progress in Roles and Mechanisms of Deacetylase SIRT7. Chinese Journal of Biotechnology, 35, 13-26.
[78]  Qi, H., Shi, X., Yu, M., Liu, B., Liu, M., Song, S., et al. (2018) Sirtuin 7-Mediated Deacetylation of WD Repeat Domain 77 (WDR77) Suppresses Cancer Cell Growth by Reducing WDR77/PRMT5 Transmethylase Complex Activity. Journal of Biological Chemistry, 293, 17769-17779.
https://doi.org/10.1074/jbc.ra118.003629
[79]  Liu, X., Li, C., Li, Q., Chang, H. and Tang, Y. (2020) SIRT7 Facilitates CENP-A Nucleosome Assembly and Suppresses Intestinal Tumorigenesis. iScience, 23, Article 101461.
https://doi.org/10.1016/j.isci.2020.101461
[80]  Wang, D., Wei, X., Chen, X., Wang, Q., Zhang, J., Kalvakolanu, D.V., et al. (2021) GRIM-19 Inhibits Proliferation and Induces Apoptosis in a P53-Dependent Manner in Colorectal Cancer Cells through the SIRT7/PCAF/MDM2 Axis. Experimental Cell Research, 407, Article 112799.
https://doi.org/10.1016/j.yexcr.2021.112799
[81]  Tang, M., Lu, X., Zhang, C., Du, C., Cao, L., Hou, T., et al. (2017) Downregulation of SIRT7 by 5-Fluorouracil Induces Radiosensitivity in Human Colorectal Cancer. Theranostics, 7, 1346-1359.
https://doi.org/10.7150/thno.18804
[82]  Yu, H., Ye, W., Wu, J., Meng, X., Liu, R., Ying, X., et al. (2014) Overexpression of SIRT7 Exhibits Oncogenic Property and Serves as a Prognostic Factor in Colorectal Cancer. Clinical Cancer Research, 20, 3434-3445.
https://doi.org/10.1158/1078-0432.ccr-13-2952
[83]  Jung, W., Hong, K.D., Jung, W.Y., Lee, E., Shin, B.K., Kim, H.K., et al. (2013) SIRT1 Expression Is Associated with Good Prognosis in Colorectal Cancer. Korean Journal of Pathology, 47, 332-339.
https://doi.org/10.4132/koreanjpathol.2013.47.4.332
[84]  Wu, S., Jiang, J., Liu, J., Wang, X., Gan, Y. and Tang, Y. (2017) Meta-Analysis of SIRT1 Expression as a Prognostic Marker for Overall Survival in Gastrointestinal Cancer. Oncotarget, 8, 62589-62599.
https://doi.org/10.18632/oncotarget.19880
[85]  Zu, G., Ji, A., Zhou, T. and Che, N. (2016) Clinicopathological Significance of SIRT1 Expression in Colorectal Cancer: A Systematic Review and Meta Analysis. International Journal of Surgery, 26, 32-37.
https://doi.org/10.1016/j.ijsu.2016.01.002
[86]  Chen, X., Sun, K., Jiao, S., Cai, N., Zhao, X., Zou, H., et al. (2014) High Levels of SIRT1 Expression Enhance Tumorigenesis and Associate with a Poor Prognosis of Colorectal Carcinoma Patients. Scientific Reports, 4, Article No. 7481.
https://doi.org/10.1038/srep07481
[87]  Lee, G.J., Jung, Y.H., Kim, T., Chong, Y., Jeong, S., Lee, I.K., et al. (2021) Surtuin 1 as a Potential Prognostic Biomarker in Very Elderly Patients with Colorectal Cancer. The Korean Journal of Internal Medicine, 36, S235-S244.
https://doi.org/10.3904/kjim.2019.249
[88]  He, Q., Chen, K., Ye, R., Dai, N., Guo, P. and Wang, L. (2020) Associations of Sirtuins with Clinicopathological Variables and Prognosis in Human Ovarian Cancer. Oncology Letters, 19, 3278-3288.
https://doi.org/10.3892/ol.2020.11432
[89]  Zhou, Y., Cheng, S., Chen, S. and Zhao, Y. (2018) Prognostic and Clinicopathological Value of SIRT3 Expression in Various Cancers: A Systematic Review and Meta-Analysis. OncoTargets and Therapy, 11, 2157-2167.
https://doi.org/10.2147/ott.s157836
[90]  Gaya-Bover, A., Hernández-López, R., Alorda-Clara, M., Ibarra de la Rosa, J.M., Falcó, E., Fernández, T., et al. (2020) Antioxidant Enzymes Change in Different Non-Metastatic Stages in Tumoral and Peritumoral Tissues of Colorectal Cancer. The International Journal of Biochemistry & Cell Biology, 120, Article 105698.
https://doi.org/10.1016/j.biocel.2020.105698
[91]  Liu, C., Huang, Z., Jiang, H. and Shi, F. (2014) The Sirtuin 3 Expression Profile Is Associated with Pathological and Clinical Outcomes in Colon Cancer Patients. BioMed Research International, 2014, Article 871263.
https://doi.org/10.1155/2014/871263
[92]  Ekremoglu, O. and Koc, A. (2021) The Role of SIRT5 and P53 Proteins in the Sensitivity of Colon Cancer Cells to Chemotherapeutic Agent 5-Fluorouracil. Molecular Biology Reports, 48, 5485-5495.
https://doi.org/10.1007/s11033-021-06558-9
[93]  Geng, C., Zhang, C., Zhang, J., Gao, P., He, M. and Li, Y. (2018) Overexpression of SIRT6 Is a Novel Biomarker of Malignant Human Colon Carcinoma. Journal of Cellular Biochemistry, 119, 3957-3967.
https://doi.org/10.1002/jcb.26539
[94]  Li, N., Mao, D., Cao, Y., Li, H., Ren, F. and Li, K. (2018) Downregulation of SIRT6 by miR-34c-5p Is Associated with Poor Prognosis and Promotes Colon Cancer Proliferation through Inhibiting Apoptosis via the JAK2/STAT3 Signaling Pathway. International Journal of Oncology, 52, 1515-1527.
https://doi.org/10.3892/ijo.2018.4304
[95]  Huo, Q., Li, Z., Cheng, L., Yang, F. and Xie, N. (2020) SIRT7 Is a Prognostic Biomarker Associated with Immune Infiltration in Luminal Breast Cancer. Frontiers in Oncology, 10, Article 621.
https://doi.org/10.3389/fonc.2020.00621

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133