全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

热丝CVD法大批量制备金刚石涂层刀具工艺的温度场仿真优化
Simulation and Optimization of the Temperature Field for Mass Production of Diamond-Coated Tools via Hot-Filament Chemical Vapor Deposition

DOI: 10.12677/app.2024.1412084, PP. 779-788

Keywords: 温度场仿真,热丝化学气相沉积,金刚石涂层刀具,有限元分析
Temperature Simulation
, HFCVD, Diamond-Coated Tools, Finite Element Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对热丝化学气相沉积法(HFCVD)技术批量制备金刚石涂层刀具的质量均匀性,通过模拟分析了基体温度场分布。利用正交实验设计,研究了热丝高度(H)、热丝间距(D)和热丝长度(L)三个热丝排布参数对基体温度分布的影响。仿真结果显示,通过调节热丝长度和热丝间距可以有效地改善刀尖平面的温度均匀性;而调节热丝高度则可以改善刀具排屑槽区域的温度均匀性。通过仿真确定了最优的热丝参数组合为:热丝长度L = 270 mm、热丝高度H = ?10 mm、热丝间距D = 25 mm。沉积实验的结果表明,优化后的参数能够产生均匀的温度场,从而制备出晶粒尺寸和厚度均匀的高质量金刚石涂层。
Our study investigates how to achieve consistent quality in high-throughput diamond-coated tools production via Hot Filament Chemical Vapor Deposition (HFCVD), focusing on the substrate temperature distribution. Through orthogonal experimental design, we examine the effects of filament height (H), spacing (D), and length (L) on temperature distribution. Our simulations revealed that filament length and spacing adjustments enhance temperature uniformity at the tool tip, while filament height adjustments benefit the chip groove area’s temperature uniformity. We found the optimal filament settings are a length of 270 mm, a height of ?10 mm, and a spacing of 25 mm. Our experimental results confirmed that these optimized parameters create a uniform temperature distribution, leading to high-quality diamond coatings with consistent grain size and thickness.

References

[1]  Vasu, C., Andhare, A.B. and Dumpala, R. (2024) Machinability and Tool Wear Studies on AZ91/B4C Metal Matrix Composites Using Uncoated and CVD Diamond Coated WC-Co Turning Inserts. International Journal of Refractory Metals and Hard Materials, 119, Article 106538.
https://doi.org/10.1016/j.ijrmhm.2023.106538
[2]  Parray, M.A., Din, S.H. and Wani, M.F. (2024) Enhancing Machining Performance of EN24 Steel with CVD Diamond Coated Tool and Minimal Quantity Lubrication. Engineering Research Express, 6, Article 015063.
https://doi.org/10.1088/2631-8695/ad2035
[3]  Costa, R.D.F.S., Duro, J.N.S., Sousa, V.F.C., Silva, T.E.F., Figueiredo, D.A. and Jesus, A.M.P. (2024) Drilling of CFRP/Al Multi-Material Stacks Using Wc-Co CVD Diamond Coated Tools. Procedia Structural Integrity, 53, 376-385.
https://doi.org/10.1016/j.prostr.2024.01.044
[4]  Bhowmick, S., Banerji, A. and Alpas, A.T. (2015) Tribological Behavior of Al-6.5%,-12%,-18.5% Si Alloys during Machining Using CVD Diamond and DLC Coated Tools. Surface and Coatings Technology, 284, 353-364.
https://doi.org/10.1016/j.surfcoat.2015.08.073
[5]  Cabral, G., Gäbler, J., Lindner, J., Grácio, J. and Polini, R. (2008) A Study of Diamond Film Deposition on WC-Co Inserts for Graphite Machining: Effectiveness of Sic Interlayers Prepared by HFCVD. Diamond and Related Materials, 17, 1008-1014.
https://doi.org/10.1016/j.diamond.2008.03.017
[6]  Soldatov, A., Remnev, A. and Okada, A. (2022) Reconditioning of Diamond Coated Tools and Its Impact on Cutting Performance for CFRP Laminates. Applied Sciences, 12, 1288.
https://doi.org/10.3390/app12031288
[7]  Vispute, R., Seiser, A., Lee, G., Dozier, J., Feldman, J., Robinson, L., et al. (2009) Compact and Efficient HFCVD for Electronic Grade Diamond and Related Materials. MRS Proceedings, 1203, Article No. 1725.
https://doi.org/10.1557/proc-1203-j17-25
[8]  Schäfer, L., Höfer, M. and Kröger, R. (2006) The Versatility of Hot-Filament Activated Chemical Vapor Deposition. Thin Solid Films, 515, 1017-1024.
https://doi.org/10.1016/j.tsf.2006.07.073
[9]  Matsumoto, S. (2000) Development of Diamond Synthesis Techniques at Low Pressures. Thin Solid Films, 368, 231-236.
https://doi.org/10.1016/s0040-6090(00)00771-9
[10]  Huh, J.M. and Yoon, D.Y. (2000) Enhanced Nucleation of Diamond on Polycrystalline Ni by D.C. Glow Discharge in Hot Filament CVD. Diamond and Related Materials, 9, 1475-1479.
https://doi.org/10.1016/s0925-9635(00)00272-7
[11]  Song, G.H., Sun, C., Huang, R.F., Wen, L.S. and Shi, C.X. (2000) Heat Transfer Simulation of HFCVD and Fundamentals of Diamond Vapor Growth Reactor Designing. Surface and Coatings Technology, 131, 500-505.
https://doi.org/10.1016/s0257-8972(00)00785-4
[12]  Wei, Q.P., Yu, Z.M., Ma, L., Yin, D.F. and Ye, J. (2009) The Effects of Temperature on Nanocrystalline Diamond Films Deposited on WC-13wt.% Co Substrate with W-C Gradient Layer. Applied Surface Science, 256, 1322-1328.
https://doi.org/10.1016/j.apsusc.2009.06.091
[13]  Song, C., Lee, Y., Heo, S., Hwang, N., Choi, S. and Kim, K. (2017) Computer Simulation of Temperature Parameter for Diamond Formation by Using Hot-Filament Chemical Vapor Deposition. Coatings, 8, Article 15.
https://doi.org/10.3390/coatings8010015
[14]  Wu, Y., Zhang, H., Yan, G., Liu, L., Cristea, D., Wang, H., et al. (2021) Hot Filament Chemical Vapor Deposition Temperature Field Optimization for Diamond Films Deposited on Silicon Nitride Substrates. Materials Research Express, 8, Article 116403.
https://doi.org/10.1088/2053-1591/ac3278
[15]  Zhang, T., Qian, Y., Wang, S., Huang, G., Zhang, L. and Xue, Z. (2019) Influence of the Heat Dissipation Mode of Long-Flute Cutting Tools on Temperature Distribution during HFCVD Diamond Films. Crystals, 9, Article 394.
https://doi.org/10.3390/cryst9080394
[16]  Shen, B., Chen, S., Cheng, L. and Sun, F. (2014) The Effect of the Double-Deck Filament Setup on Enhancing the Uniformity of Temperature Field on Long-Flute Cutting Tools. Surface Review and Letters, 21, Article 1450078.
https://doi.org/10.1142/s0218625x14500784
[17]  Wang, H., Shen, X., Wang, X. and Sun, F. (2020) Simulation and Experimental Researches on the Substrate Temperature Distribution of the Large-Capacity HFCVD Setup for Mass-Production of Diamond Coated Milling Tools. Diamond and Related Materials, 101, Article 107610.
https://doi.org/10.1016/j.diamond.2019.107610
[18]  Zhang, J., Zhang, T., Wang, X., Shen, B. and Sun, F. (2013) Simulation and Experimental Studies on Substrate Temperature and Gas Density Field in HFCVD Diamond Films Growth on WC-Co Drill Tools. Surface Review and Letters, 20, Article 1350020.
https://doi.org/10.1142/s0218625x13500200
[19]  Ferreira, N.G., Abramof, E., Leite, N.F., Corat, E.J. and Trava-Airoldi, V.J. (2002) Analysis of Residual Stress in Diamond Films by X-Ray Diffraction and Micro-Raman Spectroscopy. Journal of Applied Physics, 91, 2466-2472.
https://doi.org/10.1063/1.1431431
[20]  Sharda, T., Rahaman, M.M., Nukaya, Y., Soga, T., Jimbo, T. and Umeno, M. (2001) Structural and Optical Properties of Diamond and Nano-Diamond Films Grown by Microwave Plasma Chemical Vapor Deposition. Diamond and Related Materials, 10, 561-567.
https://doi.org/10.1016/s0925-9635(00)00390-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133