全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Advancements in the Research of Gold Nanomaterials for Radiation Therapy Sensitization

DOI: 10.4236/jbm.2024.1211041, PP. 538-555

Keywords: Gold Nanomaterials, Radiotherapy, Sensitization

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gold nanomaterials exhibit unique advantages in tumor radiotherapy sensitization due to their enhanced X-ray deposition capability, excellent biocompatibility, and superior chemical, electronic, and optical properties. To date, studies on gold nanomaterial-mediated radiosensitization have been reported, with related mechanisms including catalyzing reactive oxygen species (ROS) production, depleting intracellular glutathione (GSH), overcoming tumor hypoxia, and regulating cell cycles. This article will elaborate on the research progress of gold nanomaterial-mediated tumor radiotherapy sensitization and discuss its mechanisms and future research directions. In addition, the limitations of gold nanomaterials in clinical applications will be further discussed.

References

[1]  Xie, J.N., Gong, L.J., Zhu, S., et al. (2019) Emerging Strategies of Nanomaterial-Mediated Tumor Radio-Sensitization. Advanced Materials, 31, Article ID: 1802244.
[2]  Chen, C.P. (2020) Role of External Beam Radiotherapy in Hepatocellular Carcinoma. Clinics in Liver Disease, 24, 701-717.
https://doi.org/10.1016/j.cld.2020.07.006
[3]  Gao, Q., Zhang, J., Gao, J., Zhang, Z., Zhu, H. and Wang, D. (2021) Gold Nanoparticles in Cancer Theranostics. Frontiers in Bioengineering and Biotechnology, 9, Article 647905.
https://doi.org/10.3389/fbioe.2021.647905
[4]  Luchini, A., et al. (2018) Structural Organization of Lipid-Functionalized-Au Nanoparticles. Colloids and Surfaces B: Biointerfaces, 168, 2-9.
https://pubmed.ncbi.nlm.nih.gov/29728291/
[5]  Tarantino, S., Caricato, A.P., Rinaldi, R., Capomolla, C. and De Matteis, V. (2023) Cancer Treatment Using Different Shapes of Gold-Based Nanomaterials in Combination with Conventional Physical Techniques. Pharmaceutics, 15, Article 500.
https://doi.org/10.3390/pharmaceutics15020500
[6]  Liu, Y., Crawford, B.M. and Vo-Dinh, T. (2018) Gold Nanoparticles-Mediated Photothermal Therapy and Immunotherapy. Immunotherapy, 10, 1175-1188.
https://doi.org/10.2217/imt-2018-0029
[7]  Iyer, A.K., Khaled, G., Fang, J. and Maeda, H. (2006) Exploiting the Enhanced Permeability and Retention Effect for Tumor Targeting. Drug Discovery Today, 11, 812-818.
https://doi.org/10.1016/j.drudis.2006.07.005
[8]  Zhang, Y., Yang, X., Xu, S., Jiang, W., Gu, Z., Guo, M., et al. (2023) Multifunctional Dendritic Au@SPP@DOX Nanoparticles Integrating Chemotherapy and Low-Dose Radiotherapy for Enhanced Anticancer Activity. Molecular Pharmaceutics, 20, 1519-1530.
https://doi.org/10.1021/acs.molpharmaceut.2c00754
[9]  Medici, S., Peana, M., Coradduzza, D. and Zoroddu, M.A. (2021) Gold Nanoparticles and Cancer: Detection, Diagnosis and Therapy. Seminars in Cancer Biology, 76, 27-37.
https://doi.org/10.1016/j.semcancer.2021.06.017
[10]  Xie, X., Liao, J., Shao, X., Li, Q. and Lin, Y. (2017) The Effect of Shape on Cellular Uptake of Gold Nanoparticles in the Forms of Stars, Rods, and Triangles. Scientific Reports, 7, Article No. 3827.
https://doi.org/10.1038/s41598-017-04229-z
[11]  Huang, X., Kang, B., Qian, W., Mackey, M.A., Chen, P.C., Oyelere, A.K., et al. (2010) Comparative Study of Photothermolysis of Cancer Cells with Nuclear-Targeted or Cytoplasm-Targeted Gold Nanospheres: Continuous Wave or Pulsed Lasers. Journal of Biomedical Optics, 15, Article ID: 058002.
https://doi.org/10.1117/1.3486538
[12]  Zhao, Y., Feng, Y., Li, J., Cui, C., Wang, A., Fang, J., et al. (2022) Endogenous Ros-Mediated Covalent Immobilization of Gold Nanoparticles in Mitochondria: A “Sharp Sword” in Tumor Radiotherapy. ACS Chemical Biology, 17, 2355-2365.
https://doi.org/10.1021/acschembio.2c00475
[13]  Rahman, W.N., Bishara, N., Ackerly, T., He, C.F., Jackson, P., Wong, C., et al. (2009) Enhancement of Radiation Effects by Gold Nanoparticles for Superficial Radiation Therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 5, 136-142.
https://doi.org/10.1016/j.nano.2009.01.014
[14]  Chithrani, D.B., Jelveh, S., Jalali, F., van Prooijen, M., Allen, C., Bristow, R.G., et al. (2010) Gold Nanoparticles as Radiation Sensitizers in Cancer Therapy. Radiation Research, 173, 719-728.
https://doi.org/10.1667/rr1984.1
[15]  Hainfeld, J.F., Dilmanian, F.A., Zhong, Z., Slatkin, D.N., Kalef-Ezra, J.A. and Smilowitz, H.M. (2010) Gold Nanoparticles Enhance the Radiation Therapy of a Murine Squamous Cell Carcinoma. Physics in Medicine and Biology, 55, 3045-3059.
https://doi.org/10.1088/0031-9155/55/11/004
[16]  Hainfeld, J.F., Smilowitz, H.M., O’Connor, M.J., Dilmanian, F.A. and Slatkin, D.N. (2013) Gold Nanoparticle Imaging and Radiotherapy of Brain Tumors in Mice. Nanomedicine, 8, 1601-1609.
https://doi.org/10.2217/nnm.12.165
[17]  Soleymanifard, S., Rostami, A., Aledavood, S.A., Matin, M.M. and Sazgarnia, A. (2017) Increased Radiotoxicity in Two Cancerous Cell Lines Irradiated by Low and High Energy Photons in the Presence of Thio-Glucose Bound Gold Nanoparticles. International Journal of Radiation Biology, 93, 407-415.
https://doi.org/10.1080/09553002.2017.1268282
[18]  Huynh, M., Kempson, I., Bezak, E. and Phillips, W. (2020) In Silico Modeling of Cellular Probabilistic Nanoparticle Radiosensitization in Head and Neck Cancers. Nanomedicine, 15, 2837-2850.
https://doi.org/10.2217/nnm-2020-0301
[19]  Ding, Y., Sun, Z., Tong, Z., Zhang, S., Min, J., Xu, Q., et al. (2020) Tumor Microenvironment-Responsive Multifunctional Peptide Coated Ultrasmall Gold Nanoparticles and Their Application in Cancer Radiotherapy. Theranostics, 10, 5195-5208.
https://doi.org/10.7150/thno.45017
[20]  Huynh, M., Kempson, I., Bezak, E. and Phillips, W. (2021) Predictive Modeling of Hypoxic Head and Neck Cancers during Fractionated Radiotherapy with Gold Nanoparticle Radiosensitization. Medical Physics, 48, 3120-3133.
https://doi.org/10.1002/mp.14872
[21]  Piccolo, O., Lincoln, J.D., Melong, N., Orr, B.C., Fernandez, N.R., Borsavage, J., et al. (2022) Radiation Dose Enhancement Using Gold Nanoparticles with a Diamond Linear Accelerator Target: A Multiple Cell Type Analysis. Scientific Reports, 12, Article No. 1559.
https://doi.org/10.1038/s41598-022-05339-z
[22]  Safari, A., Sarikhani, A., Shahbazi-Gahrouei, D., Alamzadeh, Z., Beik, J., Dezfuli, A.S., et al. (2020) Optimal Scheduling of the Nanoparticle-Mediated Cancer Photo-Thermo-Radiotherapy. Photodiagnosis and Photodynamic Therapy, 32, Article ID: 102061.
https://doi.org/10.1016/j.pdpdt.2020.102061
[23]  Sood, A., Dev, A., Sardoiwala, M.N., Choudhury, S.R., Chaturvedi, S., Mishra, A.K., et al. (2021) Alpha-Ketoglutarate Decorated Iron Oxide-Gold Core-Shell Nanoparticles for Active Mitochondrial Targeting and Radiosensitization Enhancement in Hepatocellular Carcinoma. Materials Science and Engineering: C, 129, Article ID: 112394.
https://doi.org/10.1016/j.msec.2021.112394
[24]  Qin, X., Yang, C., Xu, H., Zhang, R., Zhang, D., Tu, J., et al. (2021) Cell-Derived Biogenetic Gold Nanoparticles for Sensitizing Radiotherapy and Boosting Immune Response against Cancer. Small, 17, e2103984.
https://doi.org/10.1002/smll.202103984
[25]  Wang, C., Wu, L., Yuan, H., Yu, H., Xu, J., Chen, S., et al. (2023) A Powerful Antitumor “Trident”: The Combination of Radio-, Immuno-and Anti-Angiogenesis Therapy Based on Mesoporous Silica Single Coated Gold Nanoparticles. Journal of Materials Chemistry B, 11, 879-889.
https://doi.org/10.1039/d2tb02046g
[26]  Alhussan, A., Palmerley, N., Smazynski, J., Karasinska, J., Renouf, D.J., Schaeffer, D.F., et al. (2022) Potential of Gold Nanoparticles in Current Radiotherapy Using a Co-Culture Model of Cancer Cells and Cancer Associated Fibroblasts. Cancers, 14, Article 3586.
https://doi.org/10.3390/cancers14153586
[27]  Kan, X., Ma, J., Ma, J., Li, D., Li, F., Cao, Y., et al. (2025) Dual-Targeted tfRA4-DNA1-Ag@AuNPs: An Innovative Radiosensitizer for Enhancing Radiotherapy in Glioblastoma Multiforme. Colloids and Surfaces B: Biointerfaces, 245, Article ID: 114328.
https://doi.org/10.1016/j.colsurfb.2024.114328
[28]  Guo, S.S., Chen, M.M., Yang, Y.H., Zhang, Y.Y., Pang, X., Shi, Y.P., et al. (2024) Magnetic-Vortex Nanodonuts Enhance Ferroptosis Effect of Tumor Ablation through an Imaging-Guided Hyperthermia/Radiosensitization Strategy. iScience, 27, Article ID: 110533.
https://doi.org/10.1016/j.isci.2024.110533
[29]  Mostafavi, M., Ghazi, F., Mehrabifard, M., Alivirdiloo, V., Hajiabbasi, M., Rahimi, F., et al. (2024) State-of-the-Art Application of Nanoparticles in Radiotherapy: A Platform for Synergistic Effects in Cancer Treatment. Strahlentherapie und Onkologie.
https://doi.org/10.1007/s00066-024-02301-y
[30]  Tabatabaie, F., Franich, R., Feltis, B. and Geso, M. (2022) Oxidative Damage to Mitochondria Enhanced by Ionising Radiation and Gold Nanoparticles in Cancer Cells. International Journal of Molecular Sciences, 23, Article 6887.
https://pubmed.ncbi.nlm.nih.gov/35805905/
[31]  Gerken, L.R.H., Gerdes, M.E., Pruschy, M. and Herrmann, I.K. (2023) Prospects of Nanoparticle-Based Radioenhancement for Radiotherapy. Materials Horizons, 10, 4059-4082.
https://pubmed.ncbi.nlm.nih.gov/37555747/
[32]  Díaz-Galindo, C.A. and Garnica-Garza, H.M. (2024) Gold Nanoparticle-Enhanced Radiotherapy: Dependence of the Macroscopic Dose Enhancement on the Microscopic Localization of the Nanoparticles within the Tumor Vasculature. PLOS ONE, 19, e0304670.
https://doi.org/10.1371/journal.pone.0304670
[33]  Chen, Y., Yang, J., Fu, S. and Wu, J. (2020) Gold Nanoparticles as Radiosensitizers in Cancer Radiotherapy. International Journal of Nanomedicine, 15, 9407-9430.
https://doi.org/10.2147/ijn.s272902
[34]  Her, S., Jaffray, D.A. and Allen, C. (2017) Gold Nanoparticles for Applications in Cancer Radiotherapy: Mechanisms and Recent Advancements. Advanced Drug Delivery Reviews, 109, 84-101.
https://doi.org/10.1016/j.addr.2015.12.012
[35]  Zheng, Y. and Sanche, L. (2023) Mechanisms of Nanoscale Radiation Enhancement by Metal Nanoparticles: Role of Low Energy Electrons. International Journal of Molecular Sciences, 24, 4697.
https://doi.org/10.3390/ijms24054697
[36]  Misawa, M. and Takahashi, J. (2011) Generation of Reactive Oxygen Species Induced by Gold Nanoparticles under X-Ray and UV Irradiations. Nanomedicine: Nanotechnology, Biology and Medicine, 7, 604-614.
https://doi.org/10.1016/j.nano.2011.01.014
[37]  Riley, P.A. (1994) Free Radicals in Biology: Oxidative Stress and the Effects of Ionizing Radiation. International Journal of Radiation Biology, 65, 27-33.
https://doi.org/10.1080/09553009414550041
[38]  Shokolenko, I., Venediktova, N., Bochkareva, A., Wilson, G.L. and Alexeyev, M.F. (2009) Oxidative Stress Induces Degradation of Mitochondrial DNA. Nucleic Acids Research, 37, 2539-2548.
https://doi.org/10.1093/nar/gkp100
[39]  Tang, D., Kang, R., Livesey, K.M., Cheh, C., Farkas, A., Loughran, P., et al. (2010) Endogenous HMGB1 Regulates Autophagy. Journal of Cell Biology, 190, 881-892.
https://doi.org/10.1083/jcb.200911078
[40]  Maemura, K., Zheng, Q., Wada, T., Ozaki, M., Takao, S., Aikou, T., et al. (2005) Reactive Oxygen Species Are Essential Mediators in Antigen Presentation by Kupffer Cells. Immunology & Cell Biology, 83, 336-343.
https://doi.org/10.1111/j.1440-1711.2005.01323.x
[41]  Xiao, D., Herman-Antosiewicz, A., Antosiewicz, J., Xiao, H., Brisson, M., Lazo, J.S., et al. (2005) Diallyl Trisulfide-Induced G2-M Phase Cell Cycle Arrest in Human Prostate Cancer Cells Is Caused by Reactive Oxygen Species-Dependent Destruction and Hyperphosphorylation of Cdc25C. Oncogene, 24, 6256-6268.
https://doi.org/10.1038/sj.onc.1208759
[42]  Tsai, S.W., et al. (2022) Gold Nanoparticles Enhancing Generation of ROS for Cs-137 Radiotherapy. Nanoscale Research Letters, 17, Article 123.
https://pubmed.ncbi.nlm.nih.gov/36515781/
[43]  Miura, M. and Sasaki, T. (1991) Role of Glutathione in the Intrinsic Radioresistance of Cell Lines from a Mouse Squamous Cell Carcinoma. Radiation Research, 126, 229-236.
https://doi.org/10.2307/3577823
[44]  Lu, S.C. (2009) Regulation of Glutathione Synthesis. Molecular Aspects of Medicine, 30, 42-59.
https://doi.org/10.1016/j.mam.2008.05.005
[45]  Zhang, X., Wu, F., Liu, P., Gu, N. and Chen, Z. (2014) Enhanced Fluorescence of Gold Nanoclusters Composed of Haucl4 and Histidine by Glutathione: Glutathione Detection and Selective Cancer Cell Imaging. Small, 10, 5170-5177.
https://doi.org/10.1002/smll.201401658
[46]  Ju, E., Dong, K., Chen, Z., Liu, Z., Liu, C., Huang, Y., et al. (2016) Copper(II)-Graphitic Carbon Nitride Triggered Synergy: Improved ROS Generation and Reduced Glutathione Levels for Enhanced Photodynamic Therapy. Angewandte Chemie International Edition, 55, 11467-11471.
https://doi.org/10.1002/anie.201605509
[47]  Gao, W., Xu, K., Ji, L. and Tang, B. (2011) Effect of Gold Nanoparticles on Glutathione Depletion-Induced Hydrogen Peroxide Generation and Apoptosis in HL7702 Cells. Toxicology Letters, 205, 86-95.
https://doi.org/10.1016/j.toxlet.2011.05.1018
[48]  Zhang, X., Chen, X., Jiang, Y., Ma, N., Xia, L., Cheng, X., et al. (2018) Glutathione-depleting Gold Nanoclusters for Enhanced Cancer Radiotherapy through Synergistic External and Internal Regulations. ACS Applied Materials & Interfaces, 10, 10601-10606.
https://doi.org/10.1021/acsami.8b00207
[49]  Yong, Y., Zhang, C., Gu, Z., Du, J., Guo, Z., Dong, X., et al. (2017) Polyoxometalate-based Radiosensitization Platform for Treating Hypoxic Tumors by Attenuating Radioresistance and Enhancing Radiation Response. ACS Nano, 11, 7164-7176.
https://doi.org/10.1021/acsnano.7b03037
[50]  Hua, S., Zhao, J., Li, L., Liu, C., Zhou, L., Li, K., et al. (2024) Photosynthetic Bacteria-Based Whole-Cell Inorganic-Biohybrid System for Multimodal Enhanced Tumor Radiotherapy. Journal of Nanobiotechnology, 22, Article No. 379.
https://doi.org/10.1186/s12951-024-02654-7
[51]  Zheng, D., Li, B., Li, C., Fan, J., Lei, Q., Li, C., et al. (2016) Carbon-Dot-Decorated Carbon Nitride Nanoparticles for Enhanced Photodynamic Therapy against Hypoxic Tumor via Water Splitting. ACS Nano, 10, 8715-8722.
https://doi.org/10.1021/acsnano.6b04156
[52]  Vaupel, P., Mayer, A. and Höckel, M. (2004) Tumor Hypoxia and Malignant Progression. Methods in Enzymology, 381, 335-354.
https://doi.org/10.1016/s0076-6879(04)81023-1
[53]  Wang, Y., Shang, W., Niu, M., Tian, J. and Xu, K. (2019) Hypoxia-Active Nanoparticles Used in Tumor Theranostic. International Journal of Nanomedicine, 14, 3705-3722.
https://doi.org/10.2147/ijn.s196959
[54]  Moeller, B.J., Richardson, R.A. and Dewhirst, M.W. (2007) Hypoxia and Radiotherapy: Opportunities for Improved Outcomes in Cancer Treatment. Cancer and Metastasis Reviews, 26, 241-248.
https://doi.org/10.1007/s10555-007-9056-0
[55]  Griffin, R.J. and Corry, P.M. (2009) Commentary on Classic Paper in Hyperthermic Oncology ‘Tumour Oxygenation Is Increased by Hyperthermia at Mild Temperatures’ by CW Song et al., 1996. International Journal of Hyperthermia, 25, 96-98.
https://doi.org/10.1080/02656730902758700
[56]  Zhang, J., Yang, L., Huang, F., Zhao, C., Liu, J., Zhang, Y., et al. (2021) Multifunctional Hybrid Hydrogel Enhanced Antitumor Therapy through Multiple Destroying DNA Functions by a Triple-Combination Synergistic Therapy. Advanced Healthcare Materials, 10, e2101190.
https://doi.org/10.1002/adhm.202101190
[57]  Wang, S., You, Q., Wang, J., Song, Y., Cheng, Y., Wang, Y., et al. (2019) MSOT/CT/MR Imaging-Guided and Hypoxia-Maneuvered Oxygen Self-Supply Radiotherapy Based on One-Pot MnO2-mSiO2@Au Nanoparticles. Nanoscale, 11, 6270-6284.
https://doi.org/10.1039/c9nr00918c
[58]  He, Z., Huang, X., Wang, C., Li, X., Liu, Y., Zhou, Z., et al. (2019) A Catalase-Like Metal-Organic Framework Nanohybrid for O2-Evolving Synergistic Chemoradiotherapy. Angewandte Chemie International Edition, 58, 8752-8756.
https://doi.org/10.1002/anie.201902612
[59]  Wei, J., Chen, X., Shi, S., Mo, S. and Zheng, N. (2015) An Investigation of the Mimetic Enzyme Activity of Two-Dimensional Pd-Based Nanostructures. Nanoscale, 7, 19018-19026.
https://doi.org/10.1039/c5nr05675f
[60]  Mackey, M.A. and El-Sayed, M.A. (2014) Chemosensitization of Cancer Cells via Gold Nanoparticle-Induced Cell Cycle Regulation. Photochemistry and Photobiology, 90, 306-312.
https://pubmed.ncbi.nlm.nih.gov/24329577/
[61]  Zhuang, M., Jiang, S., Gu, A., Chen, X. and E, M. (2021) Radiosensitizing Effect of Gold Nanoparticle Loaded with Small Interfering RNA-SP1 on Lung Cancer: AuNPs-si-SP1 Regulates GZMB for Radiosensitivity. Translational Oncology, 14, Article ID: 101210.
https://doi.org/10.1016/j.tranon.2021.101210
[62]  Kim, S. and Kim, E. (2017) Feasibility Study on the Use of Gold Nanoparticles in Fractionated Kilovoltage X-Ray Treatment of Melanoma. International Journal of Radiation Biology, 94, 8-16.
https://doi.org/10.1080/09553002.2018.1393579
[63]  Roa, W., Zhang, X., Guo, L., Shaw, A., Hu, X., Xiong, Y., et al. (2009) Gold Nanoparticle Sensitize Radiotherapy of Prostate Cancer Cells by Regulation of the Cell Cycle. Nanotechnology, 20, Article ID: 375101.
https://doi.org/10.1088/0957-4484/20/37/375101
[64]  Tabei, M., Zeinizade, E., Beik, J., Kamrava, S.K., Nasiri, Z., Ghaznavi, H., et al. (2020) Insights into Nano-Photo-Thermal Therapy of Cancer: The Kinetics of Cell Death and Effect on Cell Cycle. Anti-Cancer Agents in Medicinal Chemistry, 20, 612-621.
https://doi.org/10.2174/1871520620666200129111332
[65]  Xiao, Q., Zheng, X., Bu, W., Ge, W., Zhang, S., Chen, F., et al. (2013) A Core/Satellite Multifunctional Nanotheranostic for in Vivo Imaging and Tumor Eradication by Radiation/Photothermal Synergistic Therapy. Journal of the American Chemical Society, 135, 13041-13048.
https://pubmed.ncbi.nlm.nih.gov/23924214/
[66]  Cheng, D., Gong, J., Wang, P., Zhu, J., Yu, N., Zhao, J., et al. (2021) 131I-Labeled Gold Nanoframeworks for Radiotherapy-Combined Second Near-Infrared Photothermal Therapy of Cancer. Journal of Materials Chemistry B, 9, 9316-9323.
https://doi.org/10.1039/d1tb02115j
[67]  Zuo, S., Wang, Z., Zhao, L. and Wang, J. (2023) Gold Nanoplatform for Near-Infrared Light-Activated Radio-Photothermal Gas Therapy in Breast Cancer. Frontiers in Bioengineering and Biotechnology, 10, Article 1098986.
https://doi.org/10.3389/fbioe.2022.1098986
[68]  Yang, Q., Peng, J., Shi, K., Xiao, Y., Liu, Q., Han, R., et al. (2019) Rationally Designed Peptide-Conjugated Gold/Platinum Nanosystem with Active Tumor-Targeting for Enhancing Tumor Photothermal-immunotherapy. Journal of Controlled Release, 308, 29-43.
https://doi.org/10.1016/j.jconrel.2019.06.031
[69]  Cui, L., Her, S., Dunne, M., Borst, G.R., De Souza, R., Bristow, R.G., et al. (2017) Significant Radiation Enhancement Effects by Gold Nanoparticles in Combination with Cisplatin in Triple Negative Breast Cancer Cells and Tumor Xenografts. Radiation Research, 187, 147-160.
https://doi.org/10.1667/rr14578.1
[70]  Li, T., Zhang, M., Wang, J., Wang, T., Yao, Y., Zhang, X., et al. (2015) Thermosensitive Hydrogel Co-Loaded with Gold Nanoparticles and Doxorubicin for Effective Chemoradiotherapy. The AAPS Journal, 18, 146-155.
https://doi.org/10.1208/s12248-015-9828-3
[71]  Luan, S., Xie, R., Yang, Y., Xiao, X., Zhou, J., Li, X., et al. (2022) Acid-Responsive Aggregated Gold Nanoparticles for Radiosensitization and Synergistic Chemoradiotherapy in the Treatment of Esophageal Cancer. Small, 18, e2200115.
https://doi.org/10.1002/smll.202200115
[72]  Alhussan, A., Jackson, N., Chow, N., Gete, E., Wretham, N., Dos Santos, N., et al. (2024) In Vitro and in Vivo Synergetic Radiotherapy with Gold Nanoparticles and Docetaxel for Pancreatic Cancer. Pharmaceutics, 16, Article 713.
https://doi.org/10.3390/pharmaceutics16060713
[73]  Kumar, S., Mongia, A., Gulati, S., Singh, P., Diwan, A. and Shukla, S. (2020) Emerging Theranostic Gold Nanostructures to Combat Cancer: Novel Probes for Combinatorial Immunotherapy and Photothermal Therapy. Cancer Treatment and Research Communications, 25, Article ID: 100258.
https://doi.org/10.1016/j.ctarc.2020.100258
[74]  Chong, Y., Huang, J., Xu, X., Yu, C., Ning, X., Fan, S., et al. (2020) Hyaluronic Acid-Modified Au-Ag Alloy Nanoparticles for Radiation/Nanozyme/Ag+ Multimodal Synergistically Enhanced Cancer Therapy. Bioconjugate Chemistry, 31, 1756-1765.
https://doi.org/10.1021/acs.bioconjchem.0c00224
[75]  He, C., et al. (2023) Gold Nanoparticles Enhance the Ability of Radiotherapy to Induce Immunogenic Cell Death in Glioblastoma. International Journal of Nanomedicine, 18, 5701-5712.
https://pubmed.ncbi.nlm.nih.gov/37841022/
[76]  Lu, D., Li, W., Tan, J., Li, Y., Mao, W., Zheng, Y., et al. (2024) STING Agonist Delivered by Neutrophil Membrane-Coated Gold Nanoparticles Exerts Synergistic Tumor Inhibition with Radiotherapy. ACS Applied Materials & Interfaces, 16, 53474-53488.
https://doi.org/10.1021/acsami.4c09825
[77]  Wu, C., et al. (2021) A Transformable Gold Nanocluster Aggregate-Based Synergistic Strategy for Potentiated Radiation/Gene Cancer Therapy. Journal of Materials Chemistry B, 9, 2314-2322.
https://pubmed.ncbi.nlm.nih.gov/33616590/
[78]  Kumar, S., Diwan, A., Singh, P., Gulati, S., Choudhary, D., Mongia, A., Shukla, S. and Gupta, A. (2019) Functionalized Gold Nanostructures: Promising Gene Delivery Vehicles in Cancer Treatment. RSC Advances, 9, 23894-23907.
https://pubmed.ncbi.nlm.nih.gov/35530631/
[79]  Zhang, L., Zheng, B., Guo, R., Miao, Y. and Li, B. (2021) Bone Marrow Mesenchymal Stem Cell-Mediated Ultrasmall Gold Nanoclusters and hNIS Gene Synergize Radiotherapy for Breast Cancer. Journal of Materials Chemistry B, 9, 2866-2876.
https://doi.org/10.1039/d1tb00186h

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133