全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hematopoietic Stem Cell Niche in Foetal Liver and Production of Pluripotent Stem Cell-Derived Liver Organoids

DOI: 10.4236/jbm.2024.1211035, PP. 433-456

Keywords: Hematopoietic Stem Cell (HSC), HSC Maturation, Fetal Liver Niche, Fetal Liver Organoid

Full-Text   Cite this paper   Add to My Lib

Abstract:

There is a considerable demand but limited supply for hematopoietic stem cells (HSCs) in clinics. To meet clinical needs of HSCs, new efforts focus on de novo HSCs generation from pluripotent stem cells (PSCs). Although previous attempts have yielded precursors and progenitors of HSCs, the production of fully functional HSCs has largely been unsuccessful. The failure of PSC-derived HSCs to mature to foetal liver stage is not surprising, as most methods are trying to generate hemogenic endothelium resembling that found in the aorta-gonad-mesonephros (AGM) region, highlighting the importance of understanding human foetal liver niche and developing protocols to mimic this environment. This paper investigates the diverse cellular interactions within the fetal liver niche that contribute to HSC maturation and explores the potential for generating human fetal liver organoids that can recreate these supportive environments in vitro. Such organoids could provide a groundbreaking model for studying HSC maturation and potentially offer a scalable solution for the ex vivo production of functional HSCs, paving the way for advances in both regenerative medicine and hematopoietic stem cell transplantation.

References

[1]  Ivanovs, A., Rybtsov, S., Ng, E.S., Stanley, E.G., Elefanty, A.G. and Medvinsky, A. (2017) Human Haematopoietic Stem Cell Development: From the Embryo to the Dish. Development, 144, 2323-2337.
https://doi.org/10.1242/dev.134866
[2]  Ditadi, A., Sturgeon, C.M., Tober, J., Awong, G., Kennedy, M., Yzaguirre, A.D., et al. (2015) Human Definitive Haemogenic Endothelium and Arterial Vascular Endothelium Represent Distinct Lineages. Nature Cell Biology, 17, 580-591.
https://doi.org/10.1038/ncb3161
[3]  Ng, E.S., Azzola, L., Bruveris, F.F., Calvanese, V., Phipson, B., Vlahos, K., et al. (2016) Differentiation of Human Embryonic Stem Cells to HOXA+ Hemogenic Vasculature That Resembles the Aorta-Gonad-Mesonephros. Nature Biotechnology, 34, 1168-1179.
https://doi.org/10.1038/nbt.3702
[4]  Nafria, M., Bonifer, C., Stanley, E.G., Ng, E.S. and Elefanty, A.G. (2020) Protocol for the Generation of Definitive Hematopoietic Progenitors from Human Pluripotent Stem Cells. STAR Protocols, 1, Article 100130.
https://doi.org/10.1016/j.xpro.2020.100130
[5]  Vincent, S.D., Dunn, N.R., Hayashi, S., Norris, D.P. and Robertson, E.J. (2003) Cell Fate Decisions within the Mouse Organizer Are Governed by Graded Nodal Signals. Genes & Development, 17, 1646-1662.
https://doi.org/10.1101/gad.1100503
[6]  Faial, T., Bernardo, A.S., Mendjan, S., Diamanti, E., Ortmann, D., Gentsch, G.E., et al. (2015) Brachyury and SMAD Signalling Collaboratively Orchestrate Distinct Mesoderm and Endoderm Gene Regulatory Networks in Differentiating Human Embryonic Stem Cells. Development, 142, 2121-2135.
https://doi.org/10.1242/dev.117838
[7]  Tremblay, K.D. and Zaret, K.S. (2005) Distinct Populations of Endoderm Cells Converge to Generate the Embryonic Liver Bud and Ventral Foregut Tissues. Developmental Biology, 280, 87-99.
https://doi.org/10.1016/j.ydbio.2005.01.003
[8]  Gordillo, M., Evans, T. and Gouon-Evans, V. (2015) Orchestrating Liver Development. Development, 142, 2094-2108.
https://doi.org/10.1242/dev.114215
[9]  Matsumoto, K., Yoshitomi, H., Rossant, J. and Zaret, K.S. (2001) Liver Organogenesis Promoted by Endothelial Cells Prior to Vascular Function. Science, 294, 559-563.
https://doi.org/10.1126/science.1063889
[10]  Bort, R., Signore, M., Tremblay, K., Barbera, J.P.M. and Zaret, K.S. (2006) Hex Homeobox Gene Controls the Transition of the Endoderm to a Pseudostratified, Cell Emergent Epithelium for Liver Bud Development. Developmental Biology, 290, 44-56.
https://doi.org/10.1016/j.ydbio.2005.11.006
[11]  Parviz, F., Matullo, C., Garrison, W.D., Savatski, L., Adamson, J.W., Ning, G., et al. (2003) Hepatocyte Nuclear Factor 4α Controls the Development of a Hepatic Epithelium and Liver Morphogenesis. Nature Genetics, 34, 292-296.
https://doi.org/10.1038/ng1175
[12]  Lotto, J., Stephan, T.L. and Hoodless, P.A. (2023) Fetal Liver Development and Implications for Liver Disease Pathogenesis. Nature Reviews Gastroenterology & Hepatology, 20, 561-581.
https://doi.org/10.1038/s41575-023-00775-2
[13]  Frevert, U., Engelmann, S., Zougbédé, S., Stange, J., Ng, B., Matuschewski, K., et al. (2005) Intravital Observation of Plasmodium Berghei Sporozoite Infection of the Liver. PLOS Biology, 3, e192.
https://doi.org/10.1371/journal.pbio.0030192
[14]  Bian, Z., Gong, Y., Huang, T., Lee, C.Z.W., Bian, L., Bai, Z., et al. (2020) Deciphering Human Macrophage Development at Single-Cell Resolution. Nature, 582, 571-576.
https://doi.org/10.1038/s41586-020-2316-7
[15]  Calvanese, V., Capellera-Garcia, S., Ma, F., Fares, I., Liebscher, S., Ng, E.S., et al. (2022) Mapping Human Haematopoietic Stem Cells from Haemogenic Endothelium to Birth. Nature, 604, 534-540.
https://doi.org/10.1038/s41586-022-04571-x
[16]  Ema, H. and Nakauchi, H. (2000) Expansion of Hematopoietic Stem Cells in the Developing Liver of a Mouse Embryo. Blood, 95, 2284-2288.
https://doi.org/10.1182/blood.v95.7.2284
[17]  Mikkola, H.K.A. and Orkin, S.H. (2006) The Journey of Developing Hematopoietic Stem Cells. Development, 133, 3733-3744.
https://doi.org/10.1242/dev.02568
[18]  Blaser, B.W., Moore, J.L., Hagedorn, E.J., Li, B., Riquelme, R., Lichtig, A., et al. (2017) CXCR1 Remodels the Vascular Niche to Promote Hematopoietic Stem and Progenitor Cell Engraftment. Journal of Experimental Medicine, 214, 1011-1027.
https://doi.org/10.1084/jem.20161616
[19]  Tamplin, O.J., Durand, E.M., Carr, L.A., Childs, S.J., Hagedorn, E.J., Li, P., et al. (2015) Hematopoietic Stem Cell Arrival Triggers Dynamic Remodeling of the Perivascular Niche. Cell, 160, 241-252.
https://doi.org/10.1016/j.cell.2014.12.032
[20]  Murayama, E., Sarris, M., Redd, M., Le Guyader, D., Vivier, C., Horsley, W., et al. (2015) NACA Deficiency Reveals the Crucial Role of Somite-Derived Stromal Cells in Haematopoietic Niche Formation. Nature Communications, 6, Article No. 8375.
https://doi.org/10.1038/ncomms9375
[21]  Wolf, A., Aggio, J., Campbell, C., Wright, F., Marquez, G., Traver, D., et al. (2017) Zebrafish Caudal Haematopoietic Embryonic Stromal Tissue (CHEST) Cells Support Haematopoiesis. Scientific Reports, 7, Article No. 44644.
https://doi.org/10.1038/srep44644
[22]  Berrun, A., Harris, E. and Stachura, D.L. (2018) Isthmin 1 (ism1) Is Required for Normal Hematopoiesis in Developing Zebrafish. PLOS ONE, 13, e0196872.
https://doi.org/10.1371/journal.pone.0196872
[23]  Calvanese, V. and Mikkola, H.K.A. (2023) The Genesis of Human Hematopoietic Stem Cells. Blood, 142, 519-532.
https://doi.org/10.1182/blood.2022017934
[24]  Kulkeaw, K. and Sugiyama, D. (2012) Zebrafish Erythropoiesis and the Utility of Fish as Models of Anemia. Stem Cell Research & Therapy, 3, Article No. 55.
https://doi.org/10.1186/scrt146
[25]  Ganuza, M., Hall, T., Myers, J., Nevitt, C., Sánchez-Lanzas, R., Chabot, A., et al. (2022) Murine Foetal Liver Supports Limited Detectable Expansion of Life-Long Haematopoietic Progenitors. Nature Cell Biology, 24, 1475-1486.
https://doi.org/10.1038/s41556-022-00999-5
[26]  Khan, J.A., Mendelson, A., Kunisaki, Y., Birbrair, A., Kou, Y., Arnal-Estapé, A., et al. (2016) Fetal Liver Hematopoietic Stem Cell Niches Associate with Portal Vessels. Science, 351, 176-180.
https://doi.org/10.1126/science.aad0084
[27]  Moore, K.A., Ema, H. and Lemischka, I.R. (1997) In Vitro Maintenance of Highly Purified, Transplantable Hematopoietic Stem Cells. Blood, 89, 4337-4347.
https://doi.org/10.1182/blood.v89.12.4337
[28]  Nolta, J., Thiemann, F., Arakawa-Hoyt, J., Dao, M., Barsky, L., Moore, K., et al. (2002) The AFT024 Stromal Cell Line Supports Long-Term ex vivo Maintenance of Engrafting Multipotent Human Hematopoietic Progenitors. Leukemia, 16, 352-361.
https://doi.org/10.1038/sj.leu.2402371
[29]  Chung, Y.S., Choi, B., Kwon, C.H.D., Joh, J.W. and Kim, S.J. (2010) AFT024 Cell Line in Co-Culture System Using High Pore Density Insert (HPDI) Maintains Hematopoietic Stem/Progenitor Cells (HSCs/HPCs) as More Primitive State through Histone Modification. Transplantation Proceedings, 42, 4611-4618.
https://doi.org/10.1016/j.transproceed.2010.09.175
[30]  Zhang, C.C. and Lodish, H.F. (2004) Insulin-Like Growth Factor 2 Expressed in a Novel Fetal Liver Cell Population Is a Growth Factor for Hematopoietic Stem Cells. Blood, 103, 2513-2521.
https://doi.org/10.1182/blood-2003-08-2955
[31]  Zhang, C.C., Kaba, M., Ge, G., Xie, K., Tong, W., Hug, C., et al. (2006) Angiopoietin-Like Proteins Stimulate ex vivo Expansion of Hematopoietic Stem Cells. Nature Medicine, 12, 240-245.
https://doi.org/10.1038/nm1342
[32]  Chou, S. and Lodish, H.F. (2010) Fetal Liver Hepatic Progenitors Are Supportive Stromal Cells for Hematopoietic Stem Cells. Proceedings of the National Academy of Sciences, 107, 7799-7804.
https://doi.org/10.1073/pnas.1003586107
[33]  Kiassov, A.P., Van Eyken, P., van Pelt, J.F., Depla, E., Fevery, J., Desmet, V.J., et al. (1995) Desmin Expressing Nonhematopoietic Liver Cells during Rat Liver Development: An Immunohistochemical and Morphometric Study. Differentiation, 59, 253-258.
https://doi.org/10.1046/j.1432-0436.1995.5940253.x
[34]  Ramadori, G., Saile, B., Ramadori, G. and Saile, B. (2002) Mesenchymal Cells in the Liver—One Cell Type or Two? Liver, 22, 283-294.
https://doi.org/10.1034/j.1600-0676.2002.01726.x
[35]  Ramadori, G. (1992) The Stellate Cell (Ito-Cell, Fat-Storing Cell, Lipocyte, Perisinusoidal Cell) of the Liver. Virchows Archiv B, 61, 147-158.
https://doi.org/10.1007/bf02890417
[36]  Kubota, H., Yao, H. and Reid, L.M. (2007) Identification and Characterization of Vitamin A-Storing Cells in Fetal Liver: Implications for Functional Importance of Hepatic Stellate Cells in Liver Development and Hematopoiesis. Stem Cells, 25, 2339-2349.
https://doi.org/10.1634/stemcells.2006-0316
[37]  Tan, K.S., Kulkeaw, K., Nakanishi, Y. and Sugiyama, D. (2017) Expression of Cytokine and Extracellular Matrix mRNAs in Fetal Hepatic Stellate Cells. Genes to Cells, 22, 836-844.
https://doi.org/10.1111/gtc.12517
[38]  Lee, Y., Leslie, J., Yang, Y. and Ding, L. (2020) Hepatic Stellate and Endothelial Cells Maintain Hematopoietic Stem Cells in the Developing Liver. Journal of Experimental Medicine, 218, e20200882.
https://doi.org/10.1084/jem.20200882
[39]  Ishibashi, T., Yokota, T., Tanaka, H., Ichii, M., Sudo, T., Satoh, Y., et al. (2016) ESAM Is a Novel Human Hematopoietic Stem Cell Marker Associated with a Subset of Human Leukemias. Experimental Hematology, 44, 269-281.E1.
https://doi.org/10.1016/j.exphem.2015.12.010
[40]  Ueda, T., Yokota, T., Okuzaki, D., Uno, Y., Mashimo, T., Kubota, Y., et al. (2019) Endothelial Cell-Selective Adhesion Molecule Contributes to the Development of Definitive Hematopoiesis in the Fetal Liver. Stem Cell Reports, 13, 992-1005.
https://doi.org/10.1016/j.stemcr.2019.11.002
[41]  Lu, Y., Liu, M., Yang, J., Weissman, S.M., Pan, X., Katz, S.G., et al. (2021) Spatial Transcriptome Profiling by MERFISH Reveals Fetal Liver Hematopoietic Stem Cell Niche Architecture. Cell Discovery, 7, Article No. 47.
https://doi.org/10.1038/s41421-021-00266-1
[42]  Schweitzer, K.M., Dräger, A.M., van der Valk, P., Thijsen, S.F., Zevenbergen, A., Theijsmeijer, A.P., van der Schoot, C.E. and Langenhuijsen, M.M. (1996) Constitutive Expression of E-Selectin and Vascular Cell Adhesion Molecule-1 on Endothelial Cells of Hematopoietic Tissues. The American Journal of Pathology, 148, 165-175.
[43]  Wittig, O., Paez-Cortez, J. and Cardier, J.E. (2010) Liver Sinusoidal Endothelial Cells Promote B Lymphopoiesis from Primitive Hematopoietic Cells. Stem Cells and Development, 19, 341-350.
https://doi.org/10.1089/scd.2009.0300
[44]  Balazs, A.B., Fabian, A.J., Esmon, C.T. and Mulligan, R.C. (2006) Endothelial Protein C Receptor (CD201) Explicitly Identifies Hematopoietic Stem Cells in Murine Bone Marrow. Blood, 107, 2317-2321.
https://doi.org/10.1182/blood-2005-06-2249
[45]  Iwasaki, H., Arai, F., Kubota, Y., Dahl, M. and Suda, T. (2010) Endothelial Protein C Receptor-Expressing Hematopoietic Stem Cells Reside in the Perisinusoidal Niche in Fetal Liver. Blood, 116, 544-553.
https://doi.org/10.1182/blood-2009-08-240903
[46]  Subramaniam, A., Talkhoncheh, M.S., Magnusson, M. and Larsson, J. (2018) Endothelial Protein C Receptor (EPCR) Expression Marks Human Fetal Liver Hematopoietic Stem Cells. Haematologica, 104, e47-e50.
https://doi.org/10.3324/haematol.2018.198515
[47]  Choi, Y.J., Heck, A.M., Hayes, B.J., Lih, D., Rayner, S.G., Hadland, B., et al. (2021) WNT5A from the Fetal Liver Vascular Niche Supports Human Fetal Liver Hematopoiesis. Stem Cell Research & Therapy, 12, Article No. 321.
https://doi.org/10.1186/s13287-021-02380-z
[48]  Yong, K.S.M., Keng, C.T., Tan, S.Q., Loh, E., Chang, K.T., Tan, T.C., et al. (2015) Human CD34loCD133lo Fetal Liver Cells Support the Expansion of Human CD34hiCD133hi Hematopoietic Stem Cells. Cellular & Molecular Immunology, 13, 605-614.
https://doi.org/10.1038/cmi.2015.40
[49]  Chen, Q., Khoury, M., Limmon, G., Choolani, M., Chan, J.K.Y. and Chen, J. (2013) Human Fetal Hepatic Progenitor Cells Are Distinct From, but Closely Related to, Hematopoietic Stem/Progenitor Cells. Stem Cells, 31, 1160-1169.
https://doi.org/10.1002/stem.1359
[50]  Peixoto, M.M., Soares-da-Silva, F., Bonnet, V., Ronteix, G., Santos, R.F., Mailhe, M.-P., et al. (2023) Spatiotemporal Dynamics of Cytokines Expression Dictate Fetal Liver Hematopoiesis. Preprint.
https://doi.org/10.1101/2023.08.24.554612
[51]  Popescu, D., Botting, R.A., Stephenson, E., Green, K., Webb, S., Jardine, L., et al. (2019) Decoding Human Fetal Liver Haematopoiesis. Nature, 574, 365-371.
https://doi.org/10.1038/s41586-019-1652-y
[52]  Sugiyama, D., Kulkeaw, K., Mizuochi, C., Horio, Y. and Okayama, S. (2011) Hepatoblasts Comprise a Niche for Fetal Liver Erythropoiesis through Cytokine Production. Biochemical and Biophysical Research Communications, 410, 301-306.
https://doi.org/10.1016/j.bbrc.2011.05.137
[53]  Ohls, R.K., Li, Y., Abdel-Mageed, A., Buchanan, G., Mandell, L. and Christensen, R.D. (1995) Neutrophil Pool Sizes and Granulocyte Colony-Stimulating Factor Production in Human Mid-Trimester Fetuses. Pediatric Research, 37, 806-811.
https://doi.org/10.1203/00006450-199506000-00022
[54]  Kashem, S.W., Haniffa, M. and Kaplan, D.H. (2017) Antigen-Presenting Cells in the Skin. Annual Review of Immunology, 35, 469-499.
https://doi.org/10.1146/annurev-immunol-051116-052215
[55]  Sigurdsson, V., Takei, H., Soboleva, S., Radulovic, V., Galeev, R., Siva, K., et al. (2016) Bile Acids Protect Expanding Hematopoietic Stem Cells from Unfolded Protein Stress in Fetal Liver. Cell Stem Cell, 18, 522-532.
https://doi.org/10.1016/j.stem.2016.01.002
[56]  Zhang, K., Zhao, H., Sheng, Y., Chen, X., Xu, P., Wang, J., et al. (2022) Zeb1 Sustains Hematopoietic Stem Cell Functions by Suppressing Mitofusin-2-Mediated Mitochondrial Fusion. Cell Death & Disease, 13, Article No. 735.
https://doi.org/10.1038/s41419-022-05194-w
[57]  Koike, H., Iwasawa, K., Ouchi, R., Maezawa, M., Giesbrecht, K., Saiki, N., et al. (2019) Modelling Human Hepato-Biliary-Pancreatic Organogenesis from the Foregut-Midgut Boundary. Nature, 574, 112-116.
https://doi.org/10.1038/s41586-019-1598-0
[58]  Willnow, D., Benary, U., Margineanu, A., Vignola, M.L., Konrath, F., Pongrac, I.M., et al. (2021) Quantitative Lineage Analysis Identifies a Hepato-Pancreato-Biliary Progenitor Niche. Nature, 597, 87-91.
https://doi.org/10.1038/s41586-021-03844-1
[59]  Koike, H., Iwasawa, K., Ouchi, R., Maezawa, M., Kimura, M., Kodaka, A., et al. (2021) Engineering Human Hepato-Biliary-Pancreatic Organoids from Pluripotent Stem Cells. Nature Protocols, 16, 919-936.
https://doi.org/10.1038/s41596-020-00441-w
[60]  Velazquez, J.J., LeGraw, R., Moghadam, F., Tan, Y., Kilbourne, J., Maggiore, J.C., et al. (2021) Gene Regulatory Network Analysis and Engineering Directs Development and Vascularization of Multilineage Human Liver Organoids. Cell Systems, 12, 41-55.E11.
https://doi.org/10.1016/j.cels.2020.11.002
[61]  Sorrentino, G., Rezakhani, S., Yildiz, E., Nuciforo, S., Heim, M.H., Lutolf, M.P., et al. (2020) Mechano-Modulatory Synthetic Niches for Liver Organoid Derivation. Nature Communications, 11, Article No. 3416.
https://doi.org/10.1038/s41467-020-17161-0
[62]  Kang, H.K., Sarsenova, M., Kim, D., Kim, M.S., Lee, J.Y., Sung, E., et al. (2021) Establishing a 3D in Vitro Hepatic Model Mimicking Physiologically Relevant to in vivo State. Cells, 10, Article 1268.
https://doi.org/10.3390/cells10051268
[63]  Yanagi, Y., Nakayama, K., Taguchi, T., Enosawa, S., Tamura, T., Yoshimaru, K., et al. (2017) In vivo and ex vivo Methods of Growing a Liver Bud through Tissue Connection. Scientific Reports, 7, Article No. 14085.
https://doi.org/10.1038/s41598-017-14542-2
[64]  Ouchi, R., Togo, S., Kimura, M., Shinozawa, T., Koido, M., Koike, H., et al. (2019) Modeling Steatohepatitis in Humans with Pluripotent Stem Cell-Derived Organoids. Cell Metabolism, 30, 374-384.E6.
https://doi.org/10.1016/j.cmet.2019.05.007
[65]  Takebe, T., Sekine, K., Kimura, M., Yoshizawa, E., Ayano, S., Koido, M., et al. (2017) Massive and Reproducible Production of Liver Buds Entirely from Human Pluripotent Stem Cells. Cell Reports, 21, 2661-2670.
https://doi.org/10.1016/j.celrep.2017.11.005
[66]  Wang, S., Wang, X., Tan, Z., Su, Y., Liu, J., Chang, M., et al. (2019) Human Esc-Derived Expandable Hepatic Organoids Enable Therapeutic Liver Repopulation and Pathophysiological Modeling of Alcoholic Liver Injury. Cell Research, 29, 1009-1026.
https://doi.org/10.1038/s41422-019-0242-8
[67]  Pettinato, G., Lehoux, S., Ramanathan, R., Salem, M.M., He, L., Muse, O., et al. (2019) Generation of Fully Functional Hepatocyte-Like Organoids from Human Induced Pluripotent Stem Cells Mixed with Endothelial Cells. Scientific Reports, 9, Article No. 9820.
https://doi.org/10.1038/s41598-019-45514-3
[68]  Shinozawa, T., Kimura, M., Cai, Y., Saiki, N., Yoneyama, Y., Ouchi, R., et al. (2021) High-Fidelity Drug-Induced Liver Injury Screen Using Human Pluripotent Stem Cell-Derived Organoids. Gastroenterology, 160, 831-846.E10.
https://doi.org/10.1053/j.gastro.2020.10.002
[69]  Mu, T., Xu, L., Zhong, Y., Liu, X., Zhao, Z., Huang, C., et al. (2020) Embryonic Liver Developmental Trajectory Revealed by Single-Cell RNA Sequencing in the Foxa2eGFP Mouse. Communications Biology, 3, Article No. 642.
https://doi.org/10.1038/s42003-020-01364-8
[70]  Lotto, J., Drissler, S., Cullum, R., Wei, W., Setty, M., Bell, E.M., et al. (2020) Single-Cell Transcriptomics Reveals Early Emergence of Liver Parenchymal and Non-Parenchymal Cell Lineages. Cell, 183, 702-716.E14.
https://doi.org/10.1016/j.cell.2020.09.012
[71]  Saheli, M., Sepantafar, M., Pournasr, B., Farzaneh, Z., Vosough, M., Piryaei, A., et al. (2018) Three‐Dimensional Liver‐Derived Extracellular Matrix Hydrogel Promotes Liver Organoids Function. Journal of Cellular Biochemistry, 119, 4320-4333.
https://doi.org/10.1002/jcb.26622
[72]  Takeishi, K., Collin de l’Hortet, A., Wang, Y., Handa, K., Guzman-Lepe, J., Matsubara, K., et al. (2020) Assembly and Function of a Bioengineered Human Liver for Transplantation Generated Solely from Induced Pluripotent Stem Cells. Cell Reports, 31, Article 107711.
https://doi.org/10.1016/j.celrep.2020.107711
[73]  Xu, Q. (2021) Human Three-Dimensional Hepatic Models: Cell Type Variety and Corresponding Applications. Frontiers in Bioengineering and Biotechnology, 9, Article 730008.
https://doi.org/10.3389/fbioe.2021.730008
[74]  Wang, Y., Wang, H., Deng, P., Chen, W., Guo, Y., Tao, T., et al. (2018) In Situ Differentiation and Generation of Functional Liver Organoids from Human iPSCs in a 3D Perfusable Chip System. Lab on a Chip, 18, 3606-3616.
https://doi.org/10.1039/c8lc00869h
[75]  Michalopoulos, G.K., Bowen, W.C., Mulè, K. and Stolz, D.B. (2001) Histological Organization in Hepatocyte Organoid Cultures. The American Journal of Pathology, 159, 1877-1887.
https://doi.org/10.1016/s0002-9440(10)63034-9
[76]  Huch, M., Dorrell, C., Boj, S.F., van Es, J.H., Li, V.S.W., van de Wetering, M., et al. (2013) In Vitro Expansion of Single Lgr5+ Liver Stem Cells Induced by Wnt-Driven Regeneration. Nature, 494, 247-250.
https://doi.org/10.1038/nature11826
[77]  Takebe, T., Sekine, K., Enomura, M., Koike, H., Kimura, M., Ogaeri, T., et al. (2013) Vascularized and Functional Human Liver from an iPSC-Derived Organ Bud Transplant. Nature, 499, 481-484.
https://doi.org/10.1038/nature12271
[78]  Cotovio, J.P. and Fernandes, T.G. (2020) Production of Human Pluripotent Stem Cell-Derived Hepatic Cell Lineages and Liver Organoids: Current Status and Potential Applications. Bioengineering, 7, Article 36.
https://doi.org/10.3390/bioengineering7020036
[79]  Charlesworth, C.T., Hsu, I., Wilkinson, A.C. and Nakauchi, H. (2022) Immunological Barriers to Haematopoietic Stem Cell Gene Therapy. Nature Reviews Immunology, 22, 719-733.
https://doi.org/10.1038/s41577-022-00698-0
[80]  Chen, Y., Zhou, Y., Zhou, Z., Fang, Y., Ma, L., Zhang, X., et al. (2023) Hypoimmunogenic Human Pluripotent Stem Cells Are Valid Cell Sources for Cell Therapeutics with Normal Self-Renewal and Multilineage Differentiation Capacity. Stem Cell Research & Therapy, 14, Article No. 11.
https://doi.org/10.1186/s13287-022-03233-z

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133