全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Gravitational Potential and the Gravitational Force According to the Correct Schwarzschild Metric

DOI: 10.4236/jmp.2024.1512092, PP. 2256-2273

Keywords: General Theory of Relativity, Schwarzschild, Metric, Gravitational Potential, Gravitational Force, Stable Circular Orbital Motion

Full-Text   Cite this paper   Add to My Lib

Abstract:

In a recent article, we have corrected the traditional derivation of the Schwarzschild metric, thus obtaining the formulation of the correct Schwarzschild metric, which is different from the traditional Schwarzschild metric. In this article, by starting from this correct Schwarzschild metric, we obtain the formulas of the correct gravitational potential and of the correct gravitational force in the case described by this metric. Moreover, we analyse these correct results and their consequences. Finally, we propose some possible crucial experiments between the commonly accepted theory and the same theory corrected according to this article.

References

[1]  Pace, C.M. (2024) The Solution of the Einstein’s Equations in the Vacuum Region Surrounding a Spherically Symmetric Mass Distribution. Journal of Modern Physics, 15, 1353-1374.
https://doi.org/10.4236/jmp.2024.159055
[2]  Ohanian, H.C. and Ruffini, R. (2013) Gravitation and Spacetime. 3rd Edition, Cambridge University Press.
https://doi.org/10.1017/cbo9781139003391
[3]  Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1973) Gravitation. W. H. Freeman and Company.
[4]  Landau, L.D. and Lifšits, E.M. (1976) Teoria dei campi. Editori Riuniti Edizioni Mir.
[5]  Hawking, S. (1988) A Brief History of Time. Bantam Dell Publishing Group.
[6]  Davies, P. (1995) About Time. Orion Productions.
[7]  Barrow, J.D. (1991) Theories of Everything: The Quest for Ultimate Explanation. Oxford University Press.
[8]  Barrow, J.D. (1988) The World within the World. Oxford University Press.
[9]  Penrose, R. (1989) The Emperor’s New Mind. Oxford University Press.
[10]  Gott III, J.R. (2002) Time Travel in Einstein’s Universe. Houghton Mifflin Harcourt.
[11]  Gubser, S.S. and Pretorius, F. (2017) The Little Book of Black Holes. Princeton University Press.
https://doi.org/10.2307/j.ctvc774j3
[12]  López-Cruz, O., Añorve, C., Birkinshaw, M., Worrall, D.M., Ibarra-Medel, H.J., Barkhouse, W.A., et al. (2014) The Brightest Cluster Galaxy in A85: The Largest Core Known So Far. The Astrophysical Journal Letters, 795, L31.
https://doi.org/10.1088/2041-8205/795/2/l31
[13]  Brooks, M. (2018) Exclusive: Grave Doubts over LIGO’s Discovery of Gravitational Waves.
https://www.newscientist.com/article/mg24032022-600-exclusive-grave-doubts-over-ligos-discovery-of-gravitational-waves/
[14]  Unzicker, A. (2019) Fake News from the Universe?
https://www.telepolis.de/features/Fake-News-from-the-Universe-4464599.html
[15]  Jackson, A.D., Liu, H. and Naselsky, P. (2019) Noise Residuals for GW150914 Using Maximum Likelihood and Numerical Relativity Templates. Journal of Cosmology and Astroparticle Physics, 2019, Number 5, Article 14.
https://doi.org/10.1088/1475-7516/2019/05/014
[16]  Liu, H., Creswell, J., von Hausegger, S., Jackson, A.D. and Naselsky, P. (2018) A Blind Search for a Common Signal in Gravitational Wave Detectors. Journal of Cosmology and Astroparticle Physics, 2018, Number 2, Article 13.
https://doi.org/10.1088/1475-7516/2018/02/013
[17]  van Langevelde, H.J., et al. (2024) Event Horizon Telescope: Science.
https://eventhorizontelescope.org/science
[18]  Sofri, L., et al. (2019) Perché la prima immagine del buco nero non è una “foto”.
https://www.ilpost.it/2019/04/10/immagine-buco-nero-foto/
[19]  Miyoshi, M., Kato, Y. and Makino, J. (2022) The Jet and Resolved Features of the Central Supermassive Black Hole of M87 Observed with the Event Horizon Telescope (EHT). The Astrophysical Journal, 933, Article 36.
https://doi.org/10.3847/1538-4357/ac6ddb
[20]  Miyoshi, M., Kato, Y., Makino, J. and Tsuboi, M. (2024) The Jet and Resolved Features of the Central Supermassive Black Hole of M87 Observed with EHT in 2017—comparison with the GMVA 86 Ghz Results. The Astrophysical Journal Letters, 963, L18.
https://doi.org/10.3847/2041-8213/ad250e
[21]  Bothwell, T., Kennedy, C.J., Aeppli, A., Kedar, D., Robinson, J.M., Oelker, E., et al. (2022) Resolving the Gravitational Redshift across a Millimetre-Scale Atomic Sample. Nature, 602, 420-424.
https://doi.org/10.1038/s41586-021-04349-7
[22]  Conover, E. (2021) An atomic clock measured how general relativity warps time across a millimeter.
https://www.sciencenews.org/article/atomic-clock-general-relativity-time-warp-millimeter-physics
[23]  Pitjeva, E.V. (2015) Determination of the Value of the Heliocentric Gravitational Constant (GM⊙) from Modern Observations of Planets and Spacecraft. Journal of Physical and Chemical Reference Data, 44, 031210.
https://doi.org/10.1063/1.4921980
[24]  Tannous, E. (2021) Gravitational Energy Levels: Part Two. Journal of Modern Physics, 12, 1281-1294.
https://doi.org/10.4236/jmp.2021.129079
[25]  Haug, E.G. (2021) Three Dimensional Space-Time Gravitational Metric, 3 Space + 3 Time Dimensions. Journal of High Energy Physics, Gravitation and Cosmology, 07, 1230-1254.
https://doi.org/10.4236/jhepgc.2021.74074
[26]  Rybicki, M. (2022) Gravitational Time Dilation Inside the Solid Sphere. Journal of Modern Physics, 13, 1053-1064.
https://doi.org/10.4236/jmp.2022.137059
[27]  Hawking, S.W. and Penrose, R. (1996) The Nature of Space and Time. Princeton University Press.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133