全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Salmonella enterica and Escherichia coli Cohabitation among Factors Increasing Antibiotic Resistance in Bukavu City, Democratic Republic of the Congo

DOI: 10.4236/jbm.2024.1211030, PP. 357-372

Keywords: Antimicrobial Resistance, Bacteria Cohabitation, Salmonella, Escherichia, One Health

Full-Text   Cite this paper   Add to My Lib

Abstract:

Food- and water-borne diseases exacerbate cases of antimicrobial resistance (AMR), particularly in low- and middle-income countries. Since 2011, cases of enteric infections have been reported in Bukavu city, Democratic Republic of the Congo. The objectives of this study were to evaluate the rate of AMR and multidrug resistance (MDR) of Salmonella enterica and Escherichia coli, and to determine the effect of S. enterica and E. coli cohabitation on antibiotic resistance of S. enterica. Bacteria were isolated from 553 foods, milk, and water samples collected from restaurants, taps, tanks and wells in Bukavu. Microbial analyses involved bacterial culture, and morphological and biochemical characterization. Antibiotic susceptibility tests were performed before and after bacteria cohabitation of S. enterica and E. coli isolates in the same media. 152 (27.5%) and 27 (4.9%) of the samples tested positive for S. enterica and E. coli, respectively. Salmonella isolates were more susceptible to ciprofloxacin (75.7%) and co-trimoxazole (75.0%) and more resistant to ampicillin (82.2%). E. coli was more resistant to ciprofloxacin (59.3%). Overall, 90.5% of isolates (n = 179) were MDR. The origin (food, water) of S. enterica and E. coli isolates had no significant (p > 0.05) influence on their susceptibility to antibiotics. However, S. enterica isolates from milk were significantly (p = 0.00) antibiotic-resistant than those from food and water. The cohabitation between antibiotic-susceptible S. enterica and antibiotic-resistant E. coli significantly (p < 0.00) increased the rate of antibiotic resistance of S. enterica from 30% to 89.5%, implying that interactions of antibiotic-resistant and antibiotic-susceptible bacteria in food and water could be among neglected factors promoting the spread of AMR, leading to increase AMR cases in Bukavu. Strong sanitation strategies and the operationalization of One Health approach could mitigate the spread of AMR in Bukavu city, DR Congo.

References

[1]  Samreen, Ahmad, I., Malak, H.A. and Abulreesh, H.H. (2021) Environmental Antimicrobial Resistance and Its Drivers: A Potential Threat to Public Health. Journal of Global Antimicrobial Resistance, 27, 101-111.
https://doi.org/10.1016/j.jgar.2021.08.001
[2]  FAO, UNEP, WHO, WOAH (2022) One Health Plan of Action (2022-2026). Working Together for the Health of Humans, Animals, Plants and the Environment.
https://doi.org/10.4060/cc2289en
[3]  Larsson, D.G.J., Flach, C. and Laxminarayan, R. (2022) Sewage Surveillance of Antibiotic Resistance Holds Both Opportunities and Challenges. Nature Reviews Microbiology, 21, 213-214.
https://doi.org/10.1038/s41579-022-00835-5
[4]  Balasubramanian, R., Van Boeckel, T.P., Carmeli, Y., Cosgrove, S. and Laxminarayan, R. (2023) Global Incidence in Hospital-Associated Infections Resistant to Antibiotics: An Analysis of Point Prevalence Surveys from 99 Countries. PLOS Medicine, 20, e1004178.
https://doi.org/10.1371/journal.pmed.1004178
[5]  Zhao, C., Wang, Y., Mulchandani, R. and Van Boeckel, T.P. (2024) Global Surveillance of Antimicrobial Resistance in Food Animals Using Priority Drugs Maps. Nature Communications, 15, Article No. 763.
https://doi.org/10.1038/s41467-024-45111-7
[6]  Subbiah, M., Caudell, M.A., Mair, C., Davis, M.A., Matthews, L., Quinlan, R.J., et al. (2020) Antimicrobial Resistant Enteric Bacteria Are Widely Distributed amongst People, Animals and the Environment in Tanzania. Nature Communications, 11, Article No. 228.
https://doi.org/10.1038/s41467-019-13995-5
[7]  Mbuyi-Kalonji, L., Hardy, L., Mbuyamba, J., Phoba, M., Nkoji, G., Mattheus, W., et al. (2023) Invasive Non-Typhoidal Salmonella from Stool Samples of Healthy Human Carriers Are Genetically Similar to Blood Culture Isolates: A Report from the Democratic Republic of the Congo. Frontiers in Microbiology, 14, Article ID: 1282894.
https://doi.org/10.3389/fmicb.2023.1282894
[8]  Lupande-Mwenebitu, D., Baron, S.A., Nabti, L.Z., Lunguya-Metila, O., Lavigne, J., Rolain, J., et al. (2020) Current Status of Resistance to Antibiotics in the Democratic Republic of the Congo: A Review. Journal of Global Antimicrobial Resistance, 22, 818-825.
https://doi.org/10.1016/j.jgar.2020.07.008
[9]  Phoba, M., Barbé, B., Ley, B., Van Puyvelde, S., Post, A., Mattheus, W., et al. (2020) High Genetic Similarity between Non-Typhoidal Salmonella Isolated from Paired Blood and Stool Samples of Children in the Democratic Republic of the Congo. PLOS Neglected Tropical Diseases, 14, e0008377.
https://doi.org/10.1371/journal.pntd.0008377
[10]  Théophile, M.K., Archippe, B.M., David, L.M., Mihuhi, N., Mutendela, J.K. and Kanigula, M. (2018) Antibiotic Resistance of Salmonella spp Strains Isolated from Blood Cultures in Bukavu, DR Congo. Pan African Medical Journal, 29, Article No. 42.
https://doi.org/10.11604/pamj.2018.29.42.13456
[11]  Irenge, L.M., Ambroise, J., Bearzatto, B., Durant, J., Chirimwami, R.B. and Gala, J. (2019) Whole-Genome Sequences of Multidrug-Resistant Escherichia Coli in South-Kivu Province, Democratic Republic of Congo: Characterization of Phylogenomic Changes, Virulence and Resistance Genes. BMC Infectious Diseases, 19, Article No. 137.
https://doi.org/10.1186/s12879-019-3763-3
[12]  Mulinganya, G.M., Claeys, M., Balolebwami, S.Z., Bamuleke, B.A., Mongane, J.I., Boelens, J., et al. (2021) Etiology of Early-Onset Neonatal Sepsis and Antibiotic Resistance in Bukavu, Democratic Republic of the Congo. Clinical Infectious Diseases, 73, e976-e980.
https://doi.org/10.1093/cid/ciab114
[13]  Ngaruka, G.B., Neema, B.B., Mitima, T.K., Kishabongo, A.S. and Kashongwe, O.B. (2021) Animal Source Food Eating Habits of Outpatients with Antimicrobial Resistance in Bukavu, D.R. Congo. Antimicrobial Resistance & Infection Control, 10, Article No. 124.
https://doi.org/10.1186/s13756-021-00991-y
[14]  Alawi, M., Smyth, C., Drissner, D., Zimmerer, A., Leupold, D., Müller, D., et al. (2024) Private and Well Drinking Water Are Reservoirs for Antimicrobial Resistant Bacteria. NPJ Antimicrobials and Resistance, 2, Article No. 7.
https://doi.org/10.1038/s44259-024-00024-9
[15]  Bianco, K., de Farias, B.O., Gonçalves-Brito, A.S., Alves do Nascimento, A.P., Magaldi, M., Montenegro, K., et al. (2022) Mobile Resistome of Microbial Communities and Antimicrobial Residues from Drinking Water Supply Systems in Rio De Janeiro, Brazil. Scientific Reports, 12, Article No. 19050.
https://doi.org/10.1038/s41598-022-21040-7
[16]  Larsson, D.G.J. and Flach, C. (2021) Antibiotic Resistance in the Environment. Nature Reviews Microbiology, 20, 257-269.
https://doi.org/10.1038/s41579-021-00649-x
[17]  Faure, S., Perrin-Guyomard, A., Delmas, J. and Laurentie, M. (2009) Impact of Therapeutic Treatment with β-Lactam on Transfer of the blaCTX-M-9 Resistance Gene from Salmonella enterica Serovar Virchow to Escherichia coli in Gnotobiotic Rats. Applied and Environmental Microbiology, 75, 5523-5528.
https://doi.org/10.1128/aem.00020-09
[18]  Bisimwa, A.M., Kisuya, B., Kazadi, Z.M., Muhaya, B.B. and Kankonda, A.B. (2022) Monitoring Faecal Contamination and Relationship of Physicochemical Variables with Faecal Indicator Bacteria Numbers in Bukavu Surface Waters, Tributaries of Lake Kivu in Democratic Republic of Congo. Hygiene and Environmental Health Advances, 3, Article ID: 100012.
https://doi.org/10.1016/j.heha.2022.100012
[19]  Bonso, M., Bedada, D. and Dires, S. (2023) Bacterial Contamination and Antimicrobial Resistance in Drinking Water from Food and Drinking Establishments in Shashemane Town, Ethiopia. Environmental Health Insights, 17, 1-8.
https://doi.org/10.1177/11786302231216864
[20]  Tshipamba, M.E., Lubanza, N., Adetunji, M.C. and Mwanza, M. (2018) Evaluation of the Effect of Hygiene Practices and Attitudes on the Microbial Quality of Street Vended Meats Sold in Johannesburg, South-Africa. Journal of Food Microbiology, Safety and Hygiene, 3, Article ID: 1000137.
[21]  Dégi, J., Imre, K., Herman, V., Bucur, I., Radulov, I., Petrec, O., et al. (2021) Antimicrobial Drug-Resistant Salmonella in Urban Cats: Is There an Actual Risk to Public Health? Antibiotics, 10, Article No. 1404.
https://doi.org/10.3390/antibiotics10111404
[22]  Mukomena, P.N., Simuunza, M., Munsaka, S., Kwenda, G., Bumbangi, F., Yamba, K., et al. (2024) Antimicrobial Resistance Profiles of and Associated Risk Factors for Pseudomonas aeruginosa Nosocomial Infection among Patients at Two Tertiary Healthcare Facilities in Lusaka and Copperbelt Provinces, Zambia. JAC-Antimicrobial Resistance, 6, dlae139.
https://doi.org/10.1093/jacamr/dlae139
[23]  European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2023) Recommendation. EUCAST 2023.
https://www.sfm-microbiologie.org/wp-content/uploads/2024/06/CASFM2024_V1.0.pdf
[24]  Muturi, P., Wachira, P., Wagacha, M., Mbae, C., Kavai, S., Muhammed, M., et al. (2024) Fecal Shedding, Antimicrobial Resistance and in Vitro Biofilm Formation on Simulated Gallstones by Salmonella Typhi Isolated from Typhoid Cases and Asymptomatic Carriers in Nairobi, Kenya. International Journal of Clinical Microbiology, 1, 23-36.
https://doi.org/10.14302/issn.2690-4721.ijcm-24-5030
[25]  Tack, B., Phoba, M., Barbé, B., Kalonji, L.M., Hardy, L., Van Puyvelde, S., et al. (2020) Non-Typhoidal Salmonella Bloodstream Infections in Kisantu, DR Congo: Emergence of O5-Negative Salmonella Typhimurium and Extensive Drug Resistance. PLOS Neglected Tropical Diseases, 14, e0008121.
https://doi.org/10.1371/journal.pntd.0008121
[26]  R Core Team R (2024) A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
https://www.R-project.org/
[27]  Ombeni, J.B., Peru, L.N., Munyuli, T.M., Lwango, A.A., Mwangi, T.B., Nabintu, F.T., et al. (2018) The Bacteriological Quality of Street Foods Vended in Bukavu City: Potential Health Risks to Consumers of South Kivu Province, Eastern D.R. Congo. Bacterial Empire, 1, 13-21.
https://doi.org/10.36547/be.2018.1.1.13-21
[28]  Irenge, C.A., Bikioli, F., Mulashe, P.B., Kasali, F.M., Wimba, P., Lwango, A., et al. (2024) Profile of Multidrug Resistant Bacteria in Bukavu Hospitals and Antimicrobial Susceptibility to Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis and Staphylococcus aureus. Advances in Microbiology, 14, 209-225.
https://doi.org/10.4236/aim.2024.144015
[29]  Kalonji, L.M., Post, A., Phoba, M., Falay, D., Ngbonda, D., Muyembe, J., et al. (2015) Invasive Salmonella Infections at Multiple Surveillance Sites in the Democratic Republic of the Congo, 2011-2014. Clinical Infectious Diseases, 61, S346-S353.
https://doi.org/10.1093/cid/civ713
[30]  Van Puyvelde, S., Pickard, D., Vandelannoote, K., Heinz, E., Barbé, B., de Block, T., et al. (2019) An African Salmonella Typhimurium ST313 Sublineage with Extensive Drug-Resistance and Signatures of Host Adaptation. Nature Communications, 10, Article No. 4280.
https://doi.org/10.1038/s41467-019-11844-z
[31]  Darby, E.M., Trampari, E., Siasat, P., Gaya, M.S., Alav, I., Webber, M.A., et al. (2022) Molecular Mechanisms of Antibiotic Resistance Revisited. Nature Reviews Microbiology, 21, 280-295.
https://doi.org/10.1038/s41579-022-00820-y
[32]  Osbelt, L., Almási, É.d.H., Wende, M., Kienesberger, S., Voltz, A., Lesker, T.R., et al. (2024) Klebsiella Oxytoca Inhibits Salmonella Infection through Multiple Microbiota-Context-Dependent Mechanisms. Nature Microbiology, 9, 1792-1811.
https://doi.org/10.1038/s41564-024-01710-0
[33]  Oliveira, R.A., Ng, K.M., Correia, M.B., Cabral, V., Shi, H., Sonnenburg, J.L., et al. (2020) Klebsiella Michiganensis Transmission Enhances Resistance to Enterobacteriaceae Gut Invasion by Nutrition Competition. Nature Microbiology, 5, 630-641.
https://doi.org/10.1038/s41564-019-0658-4
[34]  Faure, S., Perrin-Guyomard, A., Delmas, J.M., Chatre, P. and Laurentie, M. (2010) Transfer of Plasmid-Mediated CTX-M-9 from Salmonella enterica Serotype Virchow to Enterobacteriaceae in Human Flora-Associated Rats Treated with Cefixime. Antimicrobial Agents and Chemotherapy, 54, 164-169.
https://doi.org/10.1128/aac.00310-09
[35]  Tao, S., Chen, H., Li, N., Wang, T. and Liang, W. (2022) The Spread of Antibiotic Resistance Genes in Vivo Model. Canadian Journal of Infectious Diseases and Medical Microbiology, 2022, Article ID: 3348695.
https://doi.org/10.1155/2022/3348695
[36]  Ikhimiukor, O.O., Odih, E.E., Donado-Godoy, P. and Okeke, I.N. (2022) A Bottom-Up View of Antimicrobial Resistance Transmission in Developing Countries. Nature Microbiology, 7, 757-765.
https://doi.org/10.1038/s41564-022-01124-w

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133