Proliferation of microalgae is the result of a complex interaction between hydrological and physico-chemical variables influenced by climatic and anthropogenic factors. This study assessed algal communities in the Samendeni Dam Lake to serve as indicators of water quality for sustainable management of hydro-agricultural water resources. Therefore, physico-chemical parameters and microalgae were monitored in three sampling zones from November 2021 to October 2022. A comparison of physico-chemical parameters was realized between sampling zones and between seasons. CCA and RDA were used to establish the relationship between parameters and microalgae. The results show 96 species belonging to 46 genera, 30 families, 19 orders, 9 classes, and 7 phyla. Charophyta dominated microalgal communities in both dry and rainy seasons. Phytoplankton species reached 34 in the dry season and 41 in the rainy season, whereas periphyton revealed 41 species in both seasons. Phytoplankton abundances ranged from 213 to 5440 cells·mL?1 and 3 to 110 cells·cm?2 for periphyton. At p < 0.05, significant correlation of Charophyta with pH (r = 0.39, p-value = 0.04), EC (r = ?0.41 - 0.91, p-value = 0.00 - 0.03), Transp (r = 0.73, p-value = 0.03), Ammo (r = 0.48, p-value = 0.01), Nitra (r = 0.81, p-value = 0.01), Nitri (r = 0.91, p-value = 0.00) was observed. Bacillariophyta significantly correlated to pH (r = 0.70, p-value = 0.04), EC (r = ?0.51 - 0.94, p-value = 0.00 - 0.04), DO (r = ?0.70 - 0.81, p-value = 0.01 - 0.04), Transp (r = ?0.71 - 0.73, p-value = 0.02 - 0.03), Nitra (r = 0.84, p-value = 0.00) and OrthoP (r = 0.44 - 0.73, p-value = 0.02 - 0.03). Chlorophyta was significantly correlated to EC (r = ?0.41 - 0.95, p-value = 0.00 - 0.03), Transp (r = ?0.52, p-value = 0.01), Nitra (r = 0.71, p-value = 0.03), Ammo (r = 0.42, p-value = 0.03). Cyanophyta showed significant correlation with pH (r = 0.43, p-value = 0.02); EC (r = 0.68, p-value = 0.04), Transp (r = ?0.44, p-value = 0.02), OrthoP (r = 0.44 - 0.54, p-value = 0.00 - 0.02) and Ammo (r = 0.43, p-value = 0.02). Ochrophyta significantly correlated to Nitra (r = 0.42, p-value = 0.03). While Charophyta and Chlorophyta species in the dam lake indicate relatively good water quality, recorded harmful Cyanophyta species show a possible deterioration of the habitat. Therefore, continuous water quality monitoring since the construction of dam lakes should be performed for careful water management.
References
[1]
Bennett, E.M. and Balvanera, P. (2007) The Future of Production Systems in a Globalized World. Frontiers in Ecology and the Environment, 5, 191-198. https://doi.org/10.1890/1540-9295(2007)5[191:tfopsi]2.0.co;2
[2]
Tranvik, L.J., Downing, J.A., Cotner, J.B., Loiselle, S.A., Striegl, R.G., Ballatore, T.J., et al. (2009) Lakes and Reservoirs as Regulators of Carbon Cycling and Climate. Limnology and Oceanography, 54, 2298-2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298
[3]
Lavoie, I., Warwick, F.V., Reinhard, P. and Painchaud, J. (2005) Effet du débit sur la dynamique temporelle des algues périphytiques dans une rivière influencée par les activités agricoles. Revue des sciences de l’eau, 16, 55-77. https://doi.org/10.7202/705498ar
[4]
Groga, N. (2012) Structure, fonctionnement et dynamique du phytoplancton dans le lac de Taabo (Côte d’Ivoire). Ph.D. Dissertation, Université de Toulouse.
[5]
Neya, B.A. (2018) Analyse du contrôle biologique des micro-algues toxiques et à fla-veur grâce à la prédation par Oreochromis niloticus et Sarotherodon galilaeus dans le lac de barrage de Ziga (Burkina Faso). Ph.D. Dissertation, Université Nazi BONI.
[6]
Galvez-Cloutier, R., Ize, S. and Arsenault, S. (2002) La détérioration des plans d’eau: Manifestations et moyens de lutte contre l’eutrophisation. Vecteur Environnement, 35, 18-37.
[7]
Zongo, F., Zongo, B., Boussim, J. and Coute, A. (2009) Nouveaux taxa de microalgues dulçaquicoles pour le Burkina Faso (Afrique de l’Ouest): I-Chlorophyta. International Journal of Biological and Chemical Sciences, 2, 508-528. https://doi.org/10.4314/ijbcs.v2i4.39780
[8]
Sanogo, F., Kabore, F. and Kekele, A. (2023) Hydro-Agricultural Development, Integrated Water Resources Management in Climate Variability and Agricultural Migration Context in the Plandi 2 Sub-Watershed of Upper Mouhoun, Burkina Faso. International Journal of Geoinformatics and Geological Science, 10, 9-17. https://doi.org/10.14445/23939206/ijggs-v10i2p102
[9]
Kabre, F.A., Sanogo, S., Compaore, I. and Zongo, B. (2023) Etude du broutage et du filtrage de la microflore algale par Heterotis niloticus (Cuvier, 1829) et biocontrôle de la qualité de l’eau du lac de barrage hydroagricole de Samendeni au Burkina Faso. International Journal of Biological and Chemical Sciences, 17, 130-140. https://doi.org/10.4314/ijbcs.v17i1.10
[10]
Bourrelly, P. (1990) Les algues d’eau douce: Initiation à la systématique. Tome I, Les algues vertes. Editions Boubée.
[11]
WHO (2003) Guidelines for Safe Recreational Water Environments. Coastal and Fresh Waters. WHO Library Cataloguing-in-Publication Data.
[12]
Renuka, N., Guldhe, A., Prasanna, R., Singh, P. and Bux, F. (2018) Microalgae as Multi-Functional Options in Modern Agriculture: Current Trends, Prospects and Challenges. Biotechnology Advances, 36, 1255-1273. https://doi.org/10.1016/j.biotechadv.2018.04.004
[13]
González-Pérez, B.K., Rivas-Castillo, A.M., Valdez-Calderón, A. and Gayosso-Morales, M.A. (2021) Microalgae as Biostimulants: A New Approach in Agriculture. World Journal of Microbiology and Biotechnology, 38, Article No. 4. https://doi.org/10.1007/s11274-021-03192-2
[14]
Ouedraogo, R.B., Sanogo, S. and Inoussa, C. (2024) Assessing the Exploitation Status of Sarotherodon Galilaeus (Linnaeus, 1758) in Samendéni Reservoir, Burkina Faso. Egyptian Journal of Aquatic Biology and Fisheries, 28, 1509-1535.
[15]
Kouanda, B., Coulibaly, P., Niang, D., Fowe, T., Karambiri, H. and Paturel, J.E. (2018) Analysis of the Performance of Base Flow Separation Methods Using Chemistry and Statistics in Sudano-Sahelian Watershed, Burkina Faso. Hydrology: Current Research, 9, Article 1000300. https://doi.org/10.4172/2157-7587.1000300
[16]
APHA, AWWA and WEF (2017) Standard Methods for the Examination of Water and Wastewater. 23rd Edition, American Public Health Association.
[17]
Niamien-Ebrottié, J.E. (2010) Composition et distribution spatio-temporelle des peuplements d’algues de quatre rivières du Sud-Est de la Côte d’Ivoire (Soumié, Eholié, Ehania et Noé). Ph.D. Dissertation, Université d’Abobo-Adjamé.
[18]
Seu-Anoï, N.M. (2012) Structuration spatiale et saisonnière des peuplements phytoplanctoniques et variabilité des facteurs abiotiques dans trois complexes lagunaires de Côte d’Ivoire (Aby, Ébrié et Grand-Lahou). Ph.D. Dissertation, Université Nangui Abrogoua.
[19]
Adon, M.P. (2013) Variation spatiale et saisonnière du phytoplancton de la retenue d’eau d’Adzopé (Côte d’Ivoire): Composition, structure, biomasse et production primaire. Ph.D. Dissertation, Université Nangui Abrogoua.
[20]
Kouassi, B.A. (2013) Taxinomie, composition floristique et dynamique spatio-saisonnière des algues périphytiques de la retenue d’eau d’Adzopé (Côte d’Ivoire). Ph.D. Dissertation, Université Félix Houphouët-Boigny.
[21]
Wehr, J.D. and Sheath, R.G. (2003) Freshwater Algae of North America: Ecology and Classification. Academic Press.
[22]
Koffi, A.M. (2022) Qualité écologique de la lagune Aghien (Sud-Est de la Côte d’Ivoire): Suivi spatiotemporel et approches expérimentales des facteurs de régulation du phy-toplancton. Ph.D. Dissertation, Université Jean Lorougnon GUEDE.
[23]
Guiry, M.D. and Guiry, G.M. (2024) AlgaeBase. World-Wide Electronic Publication, University of Galway. https://www.algaebase.org/search/species/
[24]
Zongo, B. and Boussim, J.I. (2015) The Effects of Physicochemical Variables and Tadpole Assemblages on Microalgal Communities in Freshwater Temporary Ponds through an Experimental Approach. Aquatic Biosystems, 11, Article No. 1. https://doi.org/10.1186/s12999-014-0013-4
[25]
Zongo, B., Zongo, F., Toguyeni, A. and Boussim, J.I. (2017) Water Quality in Forest and Village Ponds in Burkina Faso (Western Africa). Journal of Forestry Research, 28, 1039-1048. https://doi.org/10.1007/s11676-017-0369-8
[26]
Dajoz, R. (2000) Précis d’écologie. 7e edition, Editions DUNOD.
[27]
Zongo, B., Zongo, F., Thiombiano, A. and Boussim, J.I. (2019) Phytoplankton Assemblages and Community Structure in Tropical Temporary Freshwater Ponds in Sub-Saharan Africa. Journal of Phycology, 55, 789-800. https://doi.org/10.1111/jpy.12843
[28]
Bancé, V., Ouéda, A., Kaboré, I., Zerbo, H. and Kabré, B.G. (2021) Ecological Status of a Newly Impounded Sub-Saharan Reservoir Based on Benthic Macroinvertebrates Community (Burkina Faso, West Africa). Journal of Ecology and The Natural Environment, 13, 1-10. https://doi.org/10.5897/jene2020.0871
[29]
Duncan, A.E., Barnie, S., Osei-Marfo, M., Boateng, S.N., Acquaah, G. and Oboh, G. (2023) Water Quality Monitoring in the Pra Basin of Ghana. Open Access Library Journal, 10, e10173. https://doi.org/10.4236/oalib.1110173
[30]
Ghazali, D. and Zaid, A. (2013) Etude de la qualité physico-chimique et bactériologique des eaux de la source Ain Salama-Jerri (Région de Meknes-Maroc). Larhyss Journal, 12, 22-36.
[31]
Ouattara, M., Zongo, F. and Zongo, B. (2021) Species Diversity of Cyanobacteria and Desmids of a Drinking Water Source under Anthropogenic Pressure, and Their Implication in Toxin Production and Water Quality in Sub-Saharan Africa (Burkina Faso, Western Africa). Journal of Water Resource and Protection, 13, 1000-1023. https://doi.org/10.4236/jwarp.2021.1312054
[32]
Ouattara, Y., Guiguemde, I., Diendere, F., Diarra, J. and Bary, A. (2013) Pollution des eaux dans le bassin du nakambe: Cas du barrage de Ziga. International Journal of Biological and Chemical Sciences, 6, 8034-8050. https://doi.org/10.4314/ijbcs.v6i6.47
[33]
Attingli, A.H., Zinsou, L.H., Vissin, E.W. and Laleye, P.A. (2016) Spatialisation des paramètres physico-chimiques dans les pêcheries de la Basse Vallée de l’Ouémé (Sud-Bénin). Journal of Applied Biosciences, 105, 10190-10202. https://doi.org/10.4314/jab.v105i1.15
[34]
Sunardi, S. and Wiegleb, G. (1970) Review: Climate-Induced Hydrological Changes and the Ecology of Tropical Freshwater Biota. Biodiversitas Journal of Biological Diversity, 17, 322-331. https://doi.org/10.13057/biodiv/d170144
[35]
Kaboré, I., Ouéda, A., Moog, O., Meulenbroek, P., Tampo, L., Bancé, V., et al. (2022) A Benthic Invertebrates-Based Biotic Index to Assess the Ecological Status of West African Sahel Rivers, Burkina Faso. Journal of Environmental Management, 307, Article 114503. https://doi.org/10.1016/j.jenvman.2022.114503
[36]
Bélanger, M., El-Jabi, N., Caissie, D., Ashkar, F. and Ribi, J.M. (2005) Estimation de la température de l’eau de rivière en utilisant les réseaux de neurones et la régression linéaire multiple. Revue des sciences de l’eau, 18, 403-421. https://doi.org/10.7202/705565ar
[37]
Oueda, A., Guenda, W., Kabre, A.T., Zongo, F. and Kabre, G.B. (2006) Diversity, Abundance and Seasonal Dynamic of Zooplankton Community in a South-Saharan Reservoir (Burkina Faso). Journal of Biological Sciences, 7, 1-9. https://doi.org/10.3923/jbs.2007.1.9
[38]
Rodier, J., Legube, B., Merlet, N. and Brunet, R. (2009) L’Analyse de l’Eau. 9e edition, Editions Dunod.
[39]
Greenop, B., Lovatt, K. and Robb, M. (2001) The Use of Artificial Oxygenation to Reduce Nutrient Availability in the Canning River, Western Australia. Water Science and Technology, 43, 133-144. https://doi.org/10.2166/wst.2001.0524
[40]
Parparov, A. (2010) Water Quality Assessment, Trophic Classification and Water Resources Management. Journal of Water Resource and Protection, 2, 907-915. https://doi.org/10.4236/jwarp.2010.210108
[41]
Abagale, F.K., Yusif, H. and Abagale, S.A. (2020) Nutrient Concentration in Surface Water from Crop Lands in the Tolon District, Ghana. Asian Journal of Science and Technology, 11, 10985-10991.
[42]
Cardoso-Mohedano, J., Canales-Delgadillo, J.C., Machain-Castillo, M., Sanchez-Muñoz, W., Sanchez-Cabeza, J., Esqueda-Lara, K., et al. (2022) Contrasting Nutrient Distributions during Dry and Rainy Seasons in Coastal Waters of the Southern Gulf of Mexico Driven by the Grijalva-Usumacinta River Discharges. Marine Pollution Bulletin, 178, Article 113584. https://doi.org/10.1016/j.marpolbul.2022.113584
[43]
Cook, S.C., Back, J.A. and King, R.S. (2022) Compensatory Dynamics of Lotic Algae Break down Nonlinearly with Increasing Nutrient Enrichment. Ecology, 103, e3613. https://doi.org/10.1002/ecy.3613
[44]
Proulx, F., Rodriguez, M.J., Sérodes, J.B. and Miranda, L.F. (2010) Factors Influencing Public Perception and Use of Municipal Drinking Water. Water Supply, 10, 472-485. https://doi.org/10.2166/ws.2010.511
[45]
Pratiwi, N.T., Wardiatno, Y., WahyuAzizi, and Iswantari, A. (2019) Aufwuch Community on Association to Aquatic Plant in Lake Tempe, South Sulawesi. IOP Conference Series: Earth and Environmental Science, 298, Article 012004. https://doi.org/10.1088/1755-1315/298/1/012004
[46]
Ouattara, A., Podoor, N., Teugels, G.G. and Gourene, G. (2000) Les Micro-algues de deux cours d’eau (Bia et Agnebi) de Cote d’Ivoire. Systematics and Geography of Plants, 70, 315-372. https://doi.org/10.2307/3668650
[47]
Santi, S., Poda, B., Zongo, B. and Toguyeni, A. (2023) Comparative Study of Algal Community in African Sharptooth Catfish (Clarias gariepinus, Burchell 1822) and Nile Tilapia (Oreochromis niloticus, Linnaeus 1758) Farming Ponds. Aquaculture, Fish and Fisheries, 3, 149-164. https://doi.org/10.1002/aff2.99
[48]
Hii, K.S., Mohd-Din, M., Luo, Z., Tan, S.N., Lim, Z.F., Lee, L.K., et al. (2021) Diverse Harmful Microalgal Community Assemblages in the Johor Strait and the Environmental Effects on Its Community Dynamics. Harmful Algae, 107, Article 102077. https://doi.org/10.1016/j.hal.2021.102077
[49]
Zongo, F., Zongo, B., Ouéda, A., Boussim, J.I. and Couté, A. (2007) Nouveaux taxa de micro-algues dulçaquicoles pour le Burkina Faso (Afrique de l’Ouest): II—Cyano-phyta, Heterokontophyta, Euglenophyta. Annales de l’Université de Ouagadougou-Série C, 5, 51-78.
[50]
Ravindra, K., Ameena, Meenakshi, Monika, Rani, and Kaushik, A. (2003) Seasonal Variations in Physico-Chemical Characteristics of River Yamuna in Haryana and Its Ecological Best-Designated Use. Journal of Environmental Monitoring, 5, 419-426. https://doi.org/10.1039/b301723k
[51]
Alexander, T.J., Vonlanthen, P. and Seehausen, O. (2017) Does Eutrophication-Driven Evolution Change Aquatic Ecosystems? Philosophical Transactions of the Royal Society B: Biological Sciences, 372, Article 20160041. https://doi.org/10.1098/rstb.2016.0041
[52]
Ndiritu, G.G., Gichuki, N.N., Kaur, P. and Triest, L. (2003) Characterization of Environmental Gradients Using Physico-Chemical Measurements and Diatom Densities in Nairobi River, Kenya. Aquatic Ecosystem Health & Management, 6, 343-354. https://doi.org/10.1080/14634980301484
[53]
Arreghini, S., de Cabo, L., Seoane, R., Tomazin, N., Serafín, R. and de Iorio, A.F. (2005) Influence of Rainfall on the Discharge, Nutrient Concentrations and Loads of a Stream of the “Pampa Ondulada” (buenos Aires, Argentina). Limnetica, 24, 225-236. https://doi.org/10.23818/limn.24.22
[54]
Kabré, A.T. and Illé, A. (2000) Rétrécissement saisonnier des superficies d’eau, varia-tion physico-chimique et production des pêcheries artisanales de Bagré. Centre-Est Burkina Faso. Tropicultura, 18, 130-135.
[55]
Wetzel, R.G. (2001) Limnology: Lake and River Ecosystems. Third Edition, Academic Press.
[56]
Vadeboncoeur, Y. and Steinman, A.D. (2002) Periphyton Function in Lake Ecosystems. The Scientific World Journal, 2, 1449-1468. https://doi.org/10.1100/tsw.2002.294
[57]
Garcia-Gonzalez, J. and Sommerfeld, M. (2015) Biofertilizer and Biostimulant Properties of the Microalga Acutodesmus Dimorphus. Journal of Applied Phycology, 28, 1051-1061. https://doi.org/10.1007/s10811-015-0625-2
[58]
Wehr, J.D., Sheath, R., Marcos, S. and Kociolek, P. (2015) Freshwater Algae of North America: Ecology and Classification. Academic Press.
[59]
Altaf, H.G. and Saltanat, P. (2014) Effect of Physico-Chemical Conditions on the Structure and Composition of the Phytoplankton Community in Wular Lake at Lankrishipora, Kashmir. International Journal of Biodiversity and Conservation, 6, 71-84. https://doi.org/10.5897/ijbc2013.0597
[60]
Glibert, P.M., Pitcher, G.C., Bernard, S. and Li, M. (2018) Advancements and Continuing Challenges of Emerging Technologies and Tools for Detecting Harmful Algal Blooms, Their Antecedent Conditions and Toxins, and Applications in Predictive Models. In: Glibert, P., Berdalet, E., Burford, M., Pitcher, G. and Zhou, M., Eds., Global Ecology and Oceanography of Harmful Algal Blooms, Springer International Publishing, 339-357. https://doi.org/10.1007/978-3-319-70069-4_18
[61]
Fužinato, S., Cvijan, M. and Stamenković, M. (2011) A Checklist of Desmids (Conjugatophyceae, Chlorophyta) of Serbia. II. Genus Cosmarium. Cryptogamie, Algologie, 32, 77-95. https://doi.org/10.7872/crya.v32.iss1.2011.077
[62]
Johnson, A.C., Acreman, M.C., Dunbar, M.J., Feist, S.W., Giacomello, A.M., Gozlan, R.E., et al. (2009) The British River of the Future: How Climate Change and Human Activity Might Affect Two Contrasting River Ecosystems in England. Science of The Total Environment, 407, 4787-4798. https://doi.org/10.1016/j.scitotenv.2009.05.018
[63]
Olele, N.F. and Ekelemu, J.K. (2008) Physicochemical and Periphyton/Phytoplankton Study of Onah Lake, Asaba, Nigeria. African Journal of General Agriculture, 4, 183-193.
[64]
Reynolds, C.S. (2003) The Development of Perceptions of Aquatic Eutrophication and Its Control. International Journal of Ecohydrology and Hydrobiology, 3, 149-163.
[65]
Hulyal, S.B. and Kaliwal, B.B. (2008) Dynamics of Phytoplankton in Relation to Physico-Chemical Factors of Almatti Reservoir of Bijapur District, Karnataka State. Environmental Monitoring and Assessment, 153, 45-59. https://doi.org/10.1007/s10661-008-0335-1