|
E-Commerce Letters 2024
基于风险约束的智能投资组合优化
|
Abstract:
智能投资组合优化旨在通过有效的资产配置来最大化投资回报,同时控制风险。本文研究了基于风险约束的智能投资组合优化策略,比较了遗传算法、模拟退火算法、粒子群算法和蚁群算法在实际市场数据中的应用。实验结果表明,蚁群算法在处理复杂投资组合优化问题时表现出色,尤其在高波动市场中。基于不同市场条件和投资者需求的比较分析,本文提供了优化选择建议,以提升投资组合管理效率。这一研究不仅丰富了智能投资组合优化的理论基础,还为实际投资决策提供了实用的指导。
Intelligent portfolio optimization aims to maximize investment returns through effective asset allocation while controlling risks. This paper investigates risk-constrained intelligent portfolio optimization strategies, comparing the applications of genetic algorithms, simulated annealing algorithms, particle swarm algorithms, and ant colony algorithms using actual market data. Experimental results demonstrate that the ant colony algorithm excels in handling complex portfolio optimization problems, particularly in high-volatility markets. Based on a comparative analysis of different market conditions and investor needs, this paper provides optimization recommendations to enhance portfolio management efficiency. This research not only enriches the theoretical foundation of intelligent portfolio optimization but also offers practical guidance for actual investment decision-making.
[1] | 王舞宁, 章宁, 范丹, 王熙. 基于动态交易和风险约束的智能投资组合优化[J]. 中央财经大学学报, 2021(9): 32-47. |
[2] | Yunusoglu, M.G. and Selim, H. (2013) A Fuzzy Rule Based Expert System for Stock Evaluation and Portfolio Construction: An Application to Istanbul Stock Exchange. Expert Systems with Applications, 40, 908-920. https://doi.org/10.1016/j.eswa.2012.05.047 |
[3] | Paiva, F.D., Cardoso, R.T.N., Hanaoka, G.P. and Duarte, W.M. (2019) Decision-Making for Financial Trading: A Fusion Approach of Machine Learning and Portfolio Selection. Expert Systems with Applications, 115, 635-655. https://doi.org/10.1016/j.eswa.2018.08.003 |
[4] | 齐岳, 林龙, 王治皓. 大数据背景下遗传算法在投资组合优化中的效果研究[J]. 中国管理科学, 2015(S1): 464-469. |
[5] | 吴婉婷, 朱燕, 黄定江. 在线投资组合选择的半指数梯度策略及实证分析[J]. 计算机应用, 2019(8): 2462-2467. |
[6] | Freitas, F.D., De Souza, A.F. and de Almeida, A.R. (2009) Prediction-Based Portfolio Optimization Model Using Neural Networks. Neurocomputing, 72, 2155-2170. https://doi.org/10.1016/j.neucom.2008.08.019 |
[7] | 薛雨石. 遗传算法在投资组合优化中的应用[J]. 合作经济与科技, 2023(20): 54-56. |
[8] | 周新, 赵明君. 人工智能背景下投资组合优化问题研究[J]. 常州工学院学报, 2019, 32(2): 31-35. |
[9] | 陈霞. 智能优化算法在证券投资组合应用研究[D]: [硕士学位论文]. 郑州: 华北水利水电大学, 2020. |
[10] | 张波, 陈睿君, 璐璐. 粒子群算法在投资组合中的应用[J]. 系统工程, 2007(8): 108-110. |
[11] | 吴昊, 魏文红, 张宇辉. 基于改进粒子群优化算法的投资组合优化研究[J]. 东菀理工学报, 2023, 30(3): 32-40. |
[12] | 于延磊. 基于改进蚁群算法的投资组合优化研究[D]: [硕士学位论文]. 天津: 天津商业大学, 2017. |
[13] | 马宇红, 孙亚娜, 李兴义. 具有限额约束的投资组合优化问题的量子进化算法[J]. 西北师范大学学报, 2022, 58(2): 25-33. |