|
单细胞测序技术在癫痫疾病中的应用进展
|
Abstract:
癫痫(epilepsy)是一种由多种病因导致的大脑神经元高度同步化异常放电所致的慢性脑功能障碍综合征,未经过系统治疗的癫痫患者生活质量普遍较低。单细胞测序是在单个细胞分辨率下对遗传信息进行测序,相比于传统测序更加准确,可以对细胞进行无偏见地分类、构建细胞图谱,为癫痫疾病的研究提供新途径。本文主要介绍单细胞测序技术的发展及在癫痫疾病中的应用现状,并对其发展前景进行展望。
Epilepsy is a chronic brain dysfunction syndrome caused by highly synchronized abnormal discharge of brain neurons caused by various causes. The quality of life of epilepsy patients without systemic treatment is generally lower. Single cell sequencing is to sequence genetic information at the resolution of a single cell, which is more accurate than traditional sequencing, and can classify cells without bias and construct cell maps. It can provide a new way for the study of epilepsy disease. In this paper, the development of single cell sequencing technology and its application in epilepsy are introduced, and its development prospect is prospected.
[1] | Falco-Walter, J. (2020) Epilepsy—Definition, Classification, Pathophysiology, and Epidemiology. Seminars in Neurology, 40, 617-623. https://doi.org/10.1055/s-0040-1718719 |
[2] | 薛楚鹏, 李承燕, 刘玲, 等. 难治性癫痫的遗传学病因研究进展[J]. 广东医科大学学报, 2023, 41(4): 455-459. |
[3] | 张永卓, 傅博强, 牛春艳, 等. 单细胞测序技术的发展[J]. 计量学报, 2023, 44(1): 149-156. |
[4] | Lei, Y., Tang, R., Xu, J., Wang, W., Zhang, B., Liu, J., et al. (2021) Applications of Single-Cell Sequencing in Cancer Research: Progress and Perspectives. Journal of Hematology & Oncology, 14, Article No. 91. https://doi.org/10.1186/s13045-021-01105-2 |
[5] | Cai, C., Yue, Y. and Yue, B. (2023) Single-Cell RNA Sequencing in Skeletal Muscle Developmental Biology. Biomedicine & Pharmacotherapy, 162, Article 114631. https://doi.org/10.1016/j.biopha.2023.114631 |
[6] | Slovin, S., Carissimo, A., Panariello, F., Grimaldi, A., Bouché, V., Gambardella, G., et al. (2021) Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview. In: Picardi, E., Ed., RNA Bioinformatics, Springer, 343-365. https://doi.org/10.1007/978-1-0716-1307-8_19 |
[7] | 黄敏. 单细胞测序技术在川崎病研究中的应用现状[J]. 临床儿科杂志, 2023, 41(7): 481-485. |
[8] | Abedini-Nassab, R., Taheri, F., Emamgholizadeh, A. and Naderi-Manesh, H. (2024) Single-Cell RNA Sequencing in Organ and Cell Transplantation. Biosensors, 14, Article 189. https://doi.org/10.3390/bios14040189 |
[9] | Polioudakis, D., de la Torre-Ubieta, L., Langerman, J., Elkins, A.G., Shi, X., Stein, J.L., et al. (2019) A Single-Cell Transcriptomic Atlas of Human Neocortical Development during Mid-Gestation. Neuron, 103, 785-801.e8. https://doi.org/10.1016/j.neuron.2019.06.011 |
[10] | Su, Y., Zhou, Y., Bennett, M.L., Li, S., Carceles-Cordon, M., Lu, L., et al. (2022) A Single-Cell Transcriptome Atlas of Glial Diversity in the Human Hippocampus across the Postnatal Lifespan. Cell Stem Cell, 29, 1594-1610.e8. https://doi.org/10.1016/j.stem.2022.09.010 |
[11] | Yaqubi, M. (2021) Analyzing Transcriptome of Glial Cells across the Human Lifespan Using Single Cell RNA Sequencing. McGill University. |
[12] | Awuah, W.A., Ahluwalia, A., Ghosh, S., Roy, S., Tan, J.K., Adebusoye, F.T., et al. (2023) The Molecular Landscape of Neurological Disorders: Insights from Single-Cell RNA Sequencing in Neurology and Neurosurgery. European Journal of Medical Research, 28, Article No. 529. https://doi.org/10.1186/s40001-023-01504-w |
[13] | Ochocka, N., Segit, P., Walentynowicz, K.A., Wojnicki, K., Cyranowski, S., Swatler, J., et al. (2021) Single-Cell RNA Sequencing Reveals Functional Heterogeneity of Glioma-Associated Brain Macrophages. Nature Communications, 12, Article No. 1151. https://doi.org/10.1038/s41467-021-21407-w |
[14] | Perucca, P., Bahlo, M. and Berkovic, S.F. (2020) The Genetics of Epilepsy. Annual Review of Genomics and Human Genetics, 21, 205-230. https://doi.org/10.1146/annurev-genom-120219-074937 |
[15] | Wen, F., Tan, Z., Huang, D. and Xiang, J. (2024) Molecular Mechanism Analyses of Post-Traumatic Epilepsy and Hereditary Epilepsy Based on 10× Single-Cell Transcriptome Sequencing Technology. CNS Neuroscience & Therapeutics, 30, e14702. https://doi.org/10.1111/cns.14702 |
[16] | Almeida, C., Pongilio, R.P., Móvio, M.I., Higa, G.S.V., Resende, R.R., Jiang, J., et al. (2022) Distinct Cell-Specific Roles of NOX2 and Myd88 in Epileptogenesis. Frontiers in Cell and Developmental Biology, 10, Article 926776. https://doi.org/10.3389/fcell.2022.926776 |
[17] | Chen, Z., Wang, S., Zhao, X., Fang, W., Wang, Z., Ye, H., et al. (2023) Lipid-Accumulated Reactive Astrocytes Promote Disease Progression in Epilepsy. Nature Neuroscience, 26, 542-554. https://doi.org/10.1038/s41593-023-01288-6 |
[18] | Yu, C., Deng, X. and Xu, D. (2023) Microglia in Epilepsy. Neurobiology of Disease, 185, Article 106249. https://doi.org/10.1016/j.nbd.2023.106249 |
[19] | 高庆瑶. 利用单细胞转录组测序技术对脑皮层发育不良导致癫痫的初步探索[D]: [硕士学位论文]. 秦皇岛: 华北理工大学, 2023. |
[20] | Gonzalez-Giraldo, E. and Sullivan, J.E. (2020) Advances in the Treatment of Drug-Resistant Pediatric Epilepsy. Seminars in Neurology, 40, 257-262. https://doi.org/10.1055/s-0040-1702941 |
[21] | Hoei-Hansen, C.E., Tinggaard, J., Kløvgaard, M., et al. (2022) Basic and Advanced Treatment of Children and Adults with Epilepsy. Ugeskrift for Laeger, 184, V01220072. |
[22] | Johnson, M.R. and Kaminski, R.M. (2020) A Systems-Level Framework for Anti-Epilepsy Drug Discovery. Neuropharmacology, 170, Article 107868. https://doi.org/10.1016/j.neuropharm.2019.107868 |
[23] | 徐雯, 吕玉芹, 高蕾, 等. 基于多组学数据研究奥卡西平抗痫机制[J]. 山东第一医科大学(山东省医学科学院)学报, 2022, 43(5): 327-334. |