全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impacts of Micro- and Nano-Plastics on Soil Properties and Plant Production in Agroecosystems: A Mini-Review

DOI: 10.4236/as.2024.1510059, PP. 1089-1111

Keywords: Soil Property, Micro- and Nano-Plastics, Crop Yield, Soil Microorganism, Soil Fauna, Soil Greenhouse Gas Emissions

Full-Text   Cite this paper   Add to My Lib

Abstract:

Micro- and nano-plastics (MNPs) are tiny plastic particles resulting from plastic product degradation. Soil MNPs have been identified as potential influential factors affecting various soil properties and crop biomass productivity. This mini-review provides a synthesis of recent findings concerning their effects on soil physicochemical properties, microorganisms, organic carbon content, soil nutrients, greenhouse gas emissions, soil fauna, and their impacts on plant ecophysiology, growth, and production. The results indicate that MNPs may markedly impede soil aggregation ability, increase porosity, decrease soil bulk density, enhance water retention capacity, influence soil pH and electrical conductivity, and escalate soil water evaporation. Exposure to MNPs may predominantly induce changes in soil microbial composition, reducing the diversity and complexity of microbial communities and microbial activity while enhancing soil organic carbon stability, influencing soil nutrient dynamics, and stimulating organic carbon decomposition and denitrification processes, leading to elevated soil respiration and methane emissions, and potentially decreasing soil nitrous oxide emission. Additionally, MNPs may adversely affect soil fauna, diminish seed germination rates, promote plant root growth, yet impair plant photosynthetic efficacy and biomass productivity. These findings contribute to a better understanding of the impacts and mechanistic foundations of MNPs. Future research avenues are suggested to further explore the impacts and economic implications.

References

[1]  Kumar, R., Ivy, N., Bhattacharya, S., Dey, A. and Sharma, P. (2022) Coupled Effects of Microplastics and Heavy Metals on Plants: Uptake, Bioaccumulation, and Environmental Health Perspectives. Science of the Total Environment, 836, Article ID: 155619.
https://doi.org/10.1016/j.scitotenv.2022.155619
[2]  Serrano-Ruiz, H., Martin-Closas, L. and Pelacho, A.M. (2021) Biodegradable Plastic Mulches: Impact on the Agricultural Biotic Environment. Science of the Total Environment, 750, Article ID: 141228.
https://doi.org/10.1016/j.scitotenv.2020.141228
[3]  Kim, Y., Yoon, J. and Kim, K. (2021) Microplastic Contamination in Soil Environment—A Review. Soil Science Annual, 71, 300-308.
https://doi.org/10.37501/soilsa/131646
[4]  Dai, Y., Shi, J., Zhang, N., Pan, Z., Xing, C. and Chen, X. (2021) Current Research Trends on Microplastics Pollution and Impacts on Agro-Ecosystems: A Short Review. Separation Science and Technology, 57, 656-669.
https://doi.org/10.1080/01496395.2021.1927094
[5]  Astner, A.F., Gillmore, A.B., Yu, Y., Flury, M., DeBruyn, J.M., Schaeffer, S.M., et al. (2023) Formation, Behavior, Properties and Impact of Micro-and Nanoplastics on Agricultural Soil Ecosystems (a Review). NanoImpact, 31, Article ID: 100474.
https://doi.org/10.1016/j.impact.2023.100474
[6]  Cordier, M., Uehara, T., Jorgensen, B. and Baztan, J. (2024) Reducing Plastic Production: Economic Loss or Environmental Gain? Cambridge Prisms: Plastics, 2, e2.
https://doi.org/10.1017/plc.2024.3
[7]  Ng, E., Huerta Lwanga, E., Eldridge, S.M., Johnston, P., Hu, H., Geissen, V., et al. (2018) An Overview of Microplastic and Nanoplastic Pollution in Agroecosystems. Science of the Total Environment, 627, 1377-1388.
https://doi.org/10.1016/j.scitotenv.2018.01.341
[8]  Kader, M.A., Singha, A., Begum, M.A., Jewel, A., Khan, F.H. and Khan, N.I. (2019) Mulching as Water-Saving Technique in Dryland Agriculture: Review Article. Bulletin of the National Research Centre, 43, Article No. 147.
https://doi.org/10.1186/s42269-019-0186-7
[9]  Awolesi, O., Oni, P. and Arwenyo, B. (2023) Microplastics and Nano-Plastics: From Initiation to Termination. Journal of Geoscience and Environment Protection, 11, 249-280.
https://doi.org/10.4236/gep.2023.111016
[10]  Campanale, C., Galafassi, S., Di Pippo, F., Pojar, I., Massarelli, C. and Uricchio, V.F. (2024) A Critical Review of Biodegradable Plastic Mulch Films in Agriculture: Definitions, Scientific Background and Potential Impacts. TrAC Trends in Analytical Chemistry, 170, Article ID: 117391.
https://doi.org/10.1016/j.trac.2023.117391
[11]  Geyer, R., Jambeck, J.R. and Law, K.L. (2017) Production, Use, and Fate of All Plastics Ever Made. Science Advances, 3, e1700782.
https://doi.org/10.1126/sciadv.1700782
[12]  Okeke, E.S., Chukwudozie, K.I., Addey, C.I., Okoro, J.O., Chidike Ezeorba, T.P., Atakpa, E.O., et al. (2023) Micro and Nanoplastics Ravaging Our Agroecosystem: A Review of Occurrence, Fate, Ecological Impacts, Detection, Remediation, and Prospects. Heliyon, 9, e13296.
https://doi.org/10.1016/j.heliyon.2023.e13296
[13]  Habib, R.Z., Thiemann, T. and Al Kendi, R. (2020) Microplastics and Wastewater Treatment Plants—A Review. Journal of Water Resource and Protection, 12, 1-35.
https://doi.org/10.4236/jwarp.2020.121001
[14]  Alimi, O.S., Farner Budarz, J., Hernandez, L.M. and Tufenkji, N. (2018) Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environmental Science & Technology, 52, 1704-1724.
https://doi.org/10.1021/acs.est.7b05559
[15]  Kasmuri, N., Tarmizi, N.A.A. and Mojiri, A. (2022) Occurrence, Impact, Toxicity, and Degradation Methods of Microplastics in Environment—A Review. Environmental Science and Pollution Research, 29, 30820-30836.
https://doi.org/10.1007/s11356-021-18268-7
[16]  Silva, G.C., Galleguillos Madrid, F.M., Hernández, D., Pincheira, G., Peralta, A.K., Urrestarazu Gavilán, M., et al. (2021) Microplastics and Their Effect in Horticultural Crops: Food Safety and Plant Stress. Agronomy, 11, Article No. 1528.
https://doi.org/10.3390/agronomy11081528
[17]  Sa’adu, I. and Farsang, A. (2023) Plastic Contamination in Agricultural Soils: A Review. Environmental Sciences Europe, 35, Article No. 13.
https://doi.org/10.1186/s12302-023-00720-9
[18]  Ansari, A.A., Naeem, M., Gill, S.S. and Siddiqui, Z.H. (2022) Plastics in the Soil Environment: An Overview. In: Naeem, M., et al., Eds., Agrochemicals in Soil and Environment: Impacts and Remediation, Springer Nature, 347-363.
https://doi.org/10.1007/978-981-16-9310-6_15
[19]  Li, Y., Chen, J., Dong, Q., Feng, H. and Siddique, K.H.M. (2022) Plastic Mulching Significantly Improves Soil Enzyme and Microbial Activities without Mitigating Gaseous N Emissions in Winter Wheat-Summer Maize Rotations. Field Crops Research, 286, Article ID: 108630.
https://doi.org/10.1016/j.fcr.2022.108630
[20]  Sajjad, M., Huang, Q., Khan, S., Khan, M.A., Liu, Y., Wang, J., et al. (2022) Microplastics in the Soil Environment: A Critical Review. Environmental Technology & Innovation, 27, Article ID: 102408.
https://doi.org/10.1016/j.eti.2022.102408
[21]  Das, P.P., Singh, A., Chaudhary, V., Gupta, P. and Gupta, S. (2023) Biodegradability of Agricultural Plastic Waste. In: Sarkar, A., Sharma, B. and Shekha, S., Eds., Biodegradability of Conventional Plastics, Elsevier, 243-257.
https://doi.org/10.1016/b978-0-323-89858-4.00010-5
[22]  Jin, T., Tang, J., Lyu, H., Wang, L., Gillmore, A.B. and Schaeffer, S.M. (2022) Activities of Microplastics (MPs) in Agricultural Soil: A Review of MPs Pollution from the Perspective of Agricultural Ecosystems. Journal of Agricultural and Food Chemistry, 70, 4182-4201.
https://doi.org/10.1021/acs.jafc.1c07849
[23]  Bouwmeester, H., Hollman, P.C.H. and Peters, R.J.B. (2015) Potential Health Impact of Environmentally Released Micro-and Nanoplastics in the Human Food Production Chain: Experiences from Nanotoxicology. Environmental Science & Technology, 49, 8932-8947.
https://doi.org/10.1021/acs.est.5b01090
[24]  Qi, Y., Yang, X., Pelaez, A.M., Huerta Lwanga, E., Beriot, N., Gertsen, H., et al. (2018) Macro-and Micro-Plastics in Soil-Plant System: Effects of Plastic Mulch Film Residues on Wheat (Triticum aestivum) Growth. Science of the Total Environment, 645, 1048-1056.
https://doi.org/10.1016/j.scitotenv.2018.07.229
[25]  Pérez-Reverón, R., Álvarez-Méndez, S.J., Kropp, R.M., Perdomo-González, A., Hernández-Borges, J. and Díaz-Peña, F.J. (2022) Microplastics in Agricultural Systems: Analytical Methodologies and Effects on Soil Quality and Crop Yield. Agriculture, 12, Article No. 1162.
https://doi.org/10.3390/agriculture12081162
[26]  Tang, K.H.D. (2023) Microplastics in Agricultural Soils in China: Sources, Impacts and Solutions. Environmental Pollution, 322, Article ID: 121235.
https://doi.org/10.1016/j.envpol.2023.121235
[27]  Lian, Y., Liu, W., Shi, R., Zeb, A., Wang, Q., Li, J., et al. (2022) Effects of Polyethylene and Polylactic Acid Microplastics on Plant Growth and Bacterial Community in the Soil. Journal of Hazardous Materials, 435, Article ID: 129057.
https://doi.org/10.1016/j.jhazmat.2022.129057
[28]  Islam, M.R., Ruponti, S.A., Rakib, M.A., Nguyen, H.Q. and Mourshed, M. (2022) Current Scenario and Challenges of Plastic Pollution in Bangladesh: A Focus on Farmlands and Terrestrial Ecosystems. Frontiers of Environmental Science & Engineering, 17, Article No. 66.
https://doi.org/10.1007/s11783-023-1666-4
[29]  Verma, K.K., Song, X., Xu, L., Huang, H., Liang, Q., Seth, C.S., et al. (2023) Nano-microplastic and Agro-Ecosystems: A Mini-Review. Frontiers in Plant Science, 14, Article ID: 1283852.
https://doi.org/10.3389/fpls.2023.1283852
[30]  Tripathi, D.K., Shweta, Singh, S., Singh, S., Pandey, R., Singh, V.P., et al. (2017) An Overview on Manufactured Nanoparticles in Plants: Uptake, Translocation, Accumulation and Phytotoxicity. Plant Physiology and Biochemistry, 110, 2-12.
https://doi.org/10.1016/j.plaphy.2016.07.030
[31]  Shafea, L., Yap, J., Beriot, N., Felde, V.J.M.N.L., Okoffo, E.D., Enyoh, C.E., et al. (2022) Microplastics in Agroecosystems: A Review of Effects on Soil Biota and Key Soil Functions. Journal of Plant Nutrition and Soil Science, 186, 5-22.
https://doi.org/10.1002/jpln.202200136
[32]  Ren, X., Yin, S., Wang, L. and Tang, J. (2022) Microplastics in Plant-Microbes-Soil System: A Review on Recent Studies. Science of the Total Environment, 816, Article ID: 151523.
https://doi.org/10.1016/j.scitotenv.2021.151523
[33]  Qiu, Y., Zhou, S., Zhang, C., Zhou, Y. and Qin, W. (2022) Soil Microplastic Characteristics and the Effects on Soil Properties and Biota: A Systematic Review and Meta-analysis. Environmental Pollution, 313, Article ID: 120183.
https://doi.org/10.1016/j.envpol.2022.120183
[34]  de Souza Machado, A.A., Lau, C.W., Kloas, W., Bergmann, J., Bachelier, J.B., Faltin, E., et al. (2019) Microplastics Can Change Soil Properties and Affect Plant Performance. Environmental Science & Technology, 53, 6044-6052.
https://doi.org/10.1021/acs.est.9b01339
[35]  Amobonye, A., Bhagwat, P., Raveendran, S., Singh, S. and Pillai, S. (2021) Environmental Impacts of Microplastics and Nanoplastics: A Current Overview. Frontiers in Microbiology, 12, Article ID: 768297.
https://doi.org/10.3389/fmicb.2021.768297
[36]  Qian, H., Zhang, M., Liu, G., Lu, T., Qu, Q., Du, B., et al. (2018) Effects of Soil Residual Plastic Film on Soil Microbial Community Structure and Fertility. Water, Air, & Soil Pollution, 229, Article No. 261.
https://doi.org/10.1007/s11270-018-3916-9
[37]  Rillig, M.C. (2018) Microplastic Disguising as Soil Carbon Storage. Environmental Science & Technology, 52, 6079-6080.
https://doi.org/10.1021/acs.est.8b02338
[38]  Rillig, M.C., Hoffmann, M., Lehmann, A., Liang, Y., Lück, M. and Augustin, J. (2021) Microplastic Fibers Affect Dynamics and Intensity of CO2 and N2O Fluxes from Soil Differently. Microplastics and Nanoplastics, 1, Article No. 3.
https://doi.org/10.1186/s43591-021-00004-0
[39]  Lehmann, J., Skjemstad, J., Sohi, S., Carter, J., Barson, M., Falloon, P., et al. (2008) Australian Climate-Carbon Cycle Feedback Reduced by Soil Black Carbon. Nature Geoscience, 1, 832-835.
https://doi.org/10.1038/ngeo358
[40]  Liu, H., Yang, X., Liu, G., Liang, C., Xue, S., Chen, H., et al. (2017) Response of Soil Dissolved Organic Matter to Microplastic Addition in Chinese Loess Soil. Chemosphere, 185, 907-917.
https://doi.org/10.1016/j.chemosphere.2017.07.064
[41]  Liu, H., Yang, X., Liang, C., Li, Y., Qiao, L., Ai, Z., et al. (2019) Interactive Effects of Microplastics and Glyphosate on the Dynamics of Soil Dissolved Organic Matter in a Chinese Loess Soil. Catena, 182, Article ID: 104177.
https://doi.org/10.1016/j.catena.2019.104177
[42]  Sun, Y., Li, X., Cao, N., Duan, C., Ding, C., Huang, Y., et al. (2022) Biodegradable Microplastics Enhance Soil Microbial Network Complexity and Ecological Stochasticity. Journal of Hazardous Materials, 439, Article ID: 129610.
https://doi.org/10.1016/j.jhazmat.2022.129610
[43]  Iqbal, S., Xu, J., Allen, S.D., Khan, S., Nadir, S., Arif, M.S., et al. (2020) Unraveling Consequences of Soil Micro-and Nano-Plastic Pollution on Soil-Plant System: Implications for Nitrogen (N) Cycling and Soil Microbial Activity. Chemosphere, 260, Article ID: 127578.
https://doi.org/10.1016/j.chemosphere.2020.127578
[44]  Salam, M., Zheng, H., Liu, Y., Zaib, A., Rehman, S.A.U., Riaz, N., et al. (2023) Effects of Micro(nano)plastics on Soil Nutrient Cycling: State of the Knowledge. Journal of Environmental Management, 344, Article ID: 118437.
https://doi.org/10.1016/j.jenvman.2023.118437
[45]  Huang, Y., Zhao, Y., Wang, J., Zhang, M., Jia, W. and Qin, X. (2019) LDPE Microplastic Films Alter Microbial Community Composition and Enzymatic Activities in Soil. Environmental Pollution, 254, Article ID: 112983.
https://doi.org/10.1016/j.envpol.2019.112983
[46]  Xiao, M., Shahbaz, M., Liang, Y., Yang, J., Wang, S., Chadwicka, D.R., et al. (2021) Effect of Microplastics on Organic Matter Decomposition in Paddy Soil Amended with Crop Residues and Labile C: A Three-Source-Partitioning Study. Journal of Hazardous Materials, 416, Article ID: 126221.
https://doi.org/10.1016/j.jhazmat.2021.126221
[47]  Feng, X., Wang, Q., Sun, Y., Zhang, S. and Wang, F. (2022) Microplastics Change Soil Properties, Heavy Metal Availability and Bacterial Community in a Pb-Zn-Contaminated Soil. Journal of Hazardous Materials, 424, Article ID: 127364.
https://doi.org/10.1016/j.jhazmat.2021.127364
[48]  Yan, S., Zhang, S., Xu, B., Yan, P., Wang, J., Wang, H., et al. (2023) Microplastics Change the Leaching of Nitrogen and Potassium in Mollisols. Science of The Total Environment, 878, Article ID: 163121.
https://doi.org/10.1016/j.scitotenv.2023.163121
[49]  Lozano, Y.M., Aguilar-Trigueros, C.A., Onandia, G., Maaß, S., Zhao, T. and Rillig, M.C. (2021) Effects of Microplastics and Drought on Soil Ecosystem Functions and Multifunctionality. Journal of Applied Ecology, 58, 988-996.
https://doi.org/10.1111/1365-2664.13839
[50]  Sun, H., Ai, L., Wu, X., Dai, Y., Jiang, C., Chen, X., et al. (2023) Effects of Microplastic Pollution on Agricultural Soil and Crops Based on a Global Meta-Analysis. Land Degradation & Development, 35, 551-567.
https://doi.org/10.1002/ldr.4957
[51]  Zhao, T., Lozano, Y.M. and Rillig, M.C. (2021) Microplastics Increase Soil Ph and Decrease Microbial Activities as a Function of Microplastic Shape, Polymer Type, and Exposure Time. Frontiers in Environmental Science, 9, Article ID: 675803.
https://doi.org/10.3389/fenvs.2021.675803
[52]  Lozano, Y.M. and Rillig, M.C. (2020) Effects of Microplastic Fibers and Drought on Plant Communities. Environmental Science & Technology, 54, 6166-6173.
https://doi.org/10.1021/acs.est.0c01051
[53]  Blöcker, L., Watson, C. and Wichern, F. (2020) Living in the Plastic Age—Different Short-Term Microbial Response to Microplastics Addition to Arable Soils with Contrasting Soil Organic Matter Content and Farm Management Legacy. Environmental Pollution, 267, Article ID: 115468.
https://doi.org/10.1016/j.envpol.2020.115468
[54]  Chia, R.W., Lee, J., Lee, M., Lee, G. and Jeong, C. (2023) Role of Soil Microplastic Pollution in Climate Change. Science of the Total Environment, 887, Article ID: 164112.
https://doi.org/10.1016/j.scitotenv.2023.164112
[55]  Ren, X., Tang, J., Liu, X. and Liu, Q. (2020) Effects of Microplastics on Greenhouse Gas Emissions and the Microbial Community in Fertilized Soil. Environmental Pollution, 256, Article ID: 113347.
https://doi.org/10.1016/j.envpol.2019.113347
[56]  Gao, B., Yao, H., Li, Y. and Zhu, Y. (2020) Microplastic Addition Alters the Microbial Community Structure and Stimulates Soil Carbon Dioxide Emissions in Vegetable-Growing Soil. Environmental Toxicology and Chemistry, 40, 352-365.
https://doi.org/10.1002/etc.4916
[57]  Kim, S.W., Liang, Y., Zhao, T. and Rillig, M.C. (2021) Indirect Effects of Microplastic-Contaminated Soils on Adjacent Soil Layers: Vertical Changes in Soil Physical Structure and Water Flow. Frontiers in Environmental Science, 9, Article ID: 681934.
https://doi.org/10.3389/fenvs.2021.681934
[58]  Wang, F., Wang, Q., Adams, C.A., Sun, Y. and Zhang, S. (2022) Effects of Microplastics on Soil Properties: Current Knowledge and Future Perspectives. Journal of Hazardous Materials, 424, Article ID: 127531.
https://doi.org/10.1016/j.jhazmat.2021.127531
[59]  Laughlin, R.J., Rütting, T., Müller, C., Watson, C.J. and Stevens, R.J. (2009) Effect of Acetate on Soil Respiration, N2O Emissions and Gross N Transformations Related to Fungi and Bacteria in a Grassland Soil. Applied Soil Ecology, 42, 25-30.
https://doi.org/10.1016/j.apsoil.2009.01.004
[60]  Zhou, J., Gui, H., Banfield, C.C., Wen, Y., Zang, H., Dippold, M.A., et al. (2021) The Microplastisphere: Biodegradable Microplastics Addition Alters Soil Microbial Community Structure and Function. Soil Biology and Biochemistry, 156, Article ID: 108211.
https://doi.org/10.1016/j.soilbio.2021.108211
[61]  Zhang, S., Pei, L., Zhao, Y., Shan, J., Zheng, X., Xu, G., et al. (2023) Effects of Microplastics and Nitrogen Deposition on Soil Multifunctionality, Particularly C and N Cycling. Journal of Hazardous Materials, 451, Article ID: 131152.
https://doi.org/10.1016/j.jhazmat.2023.131152
[62]  Li, J., Yu, C., Liu, Z., Wang, Y. and Wang, F. (2023) Microplastic Accelerate the Phosphorus-Related Metabolism of Bacteria to Promote the Decomposition of Methylphosphonate to Methane. Science of the Total Environment, 858, Article ID: 160020.
https://doi.org/10.1016/j.scitotenv.2022.160020
[63]  Su, P., Gao, C., Zhang, X., Zhang, D., Liu, X., Xiang, T., et al. (2023) Microplastics Stimulated Nitrous Oxide Emissions Primarily through Denitrification: A Meta-Analysis. Journal of Hazardous Materials, 445, Article ID: 130500.
https://doi.org/10.1016/j.jhazmat.2022.130500
[64]  Yu, Y., Li, X., Feng, Z., Xiao, M., Ge, T., Li, Y., et al. (2022) Polyethylene Microplastics Alter the Microbial Functional Gene Abundances and Increase Nitrous Oxide Emissions from Paddy Soils. Journal of Hazardous Materials, 432, Article ID: 128721.
https://doi.org/10.1016/j.jhazmat.2022.128721
[65]  Qiang, L., Hu, H., Li, G., Xu, J., Cheng, J., Wang, J., et al. (2023) Plastic Mulching, and Occurrence, Incorporation, Degradation, and Impacts of Polyethylene Microplastics in Agroecosystems. Ecotoxicology and Environmental Safety, 263, Article ID: 115274.
https://doi.org/10.1016/j.ecoenv.2023.115274
[66]  Yadav, S., Gupta, E., Patel, A., Srivastava, S., Mishra, V.K., Singh, P.C., et al. (2022) Unravelling the Emerging Threats of Microplastics to Agroecosystems. Reviews in Environmental Science and Bio/Technology, 21, 771-798.
https://doi.org/10.1007/s11157-022-09621-4
[67]  Iqbal, B., Zhao, T., Yin, W., Zhao, X., Xie, Q., Khan, K.Y., et al. (2023) Impacts of Soil Microplastics on Crops: A Review. Applied Soil Ecology, 181, Article ID: 104680.
https://doi.org/10.1016/j.apsoil.2022.104680
[68]  Gao, H., Yan, C., Liu, Q., Ding, W., Chen, B. and Li, Z. (2019) Effects of Plastic Mulching and Plastic Residue on Agricultural Production: A Meta-analysis. Science of The Total Environment, 651, 484-492.
https://doi.org/10.1016/j.scitotenv.2018.09.105
[69]  Bouaicha, O., Mimmo, T., Tiziani, R., Praeg, N., Polidori, C., Lucini, L., et al. (2022) Microplastics Make Their Way into the Soil and Rhizosphere: A Review of the Ecological Consequences. Rhizosphere, 22, Article ID: 100542.
https://doi.org/10.1016/j.rhisph.2022.100542
[70]  Kalčíková, G., Skalar, T., Marolt, G. and Jemec Kokalj, A. (2020) An Environmental Concentration of Aged Microplastics with Adsorbed Silver Significantly Affects Aquatic Organisms. Water Research, 175, Article ID: 115644.
https://doi.org/10.1016/j.watres.2020.115644
[71]  Azeem, I., Adeel, M., Ahmad, M.A., Shakoor, N., Jiangcuo, G.D., Azeem, K., et al. (2021) Uptake and Accumulation of Nano/Microplastics in Plants: A Critical Review. Nanomaterials, 11, Article No. 2935.
https://doi.org/10.3390/nano11112935
[72]  Bandmann, V., Müller, J.D., Köhler, T. and Homann, U. (2012) Uptake of Fluorescent Nano Beads into BY2-Cells Involves Clathrin-Dependent and Clathrin-Independent Endocytosis. FEBS Letters, 586, 3626-3632.
https://doi.org/10.1016/j.febslet.2012.08.008
[73]  Wiedner, K. and Polifka, S. (2020) Effects of Microplastic and Microglass Particles on Soil Microbial Community Structure in an Arable Soil (Chernozem). Soil, 6, 315-324.
https://doi.org/10.5194/soil-6-315-2020
[74]  Ullah, R., Tsui, M.T., Chen, H., Chow, A., Williams, C. and Ligaba-Osena, A. (2021) Microplastics Interaction with Terrestrial Plants and Their Impacts on Agriculture. Journal of Environmental Quality, 50, 1024-1041.
https://doi.org/10.1002/jeq2.20264
[75]  Dong, Y., Gao, M., Qiu, W. and Song, Z. (2021) Uptake of Microplastics by Carrots in Presence of as (III): Combined Toxic Effects. Journal of Hazardous Materials, 411, Article ID: 125055.
https://doi.org/10.1016/j.jhazmat.2021.125055
[76]  Hernández-Arenas, R., Beltrán-Sanahuja, A., Navarro-Quirant, P. and Sanz-Lazaro, C. (2021) The Effect of Sewage Sludge Containing Microplastics on Growth and Fruit Development of Tomato Plants. Environmental Pollution, 268, Article ID: 115779.
https://doi.org/10.1016/j.envpol.2020.115779
[77]  Jia, L., Liu, L., Zhang, Y., Fu, W., Liu, X., Wang, Q., et al. (2023) Microplastic Stress in Plants: Effects on Plant Growth and Their Remediations. Frontiers in Plant Science, 14, Article ID: 1226484.
https://doi.org/10.3389/fpls.2023.1226484
[78]  Bosker, T., Bouwman, L.J., Brun, N.R., Behrens, P. and Vijver, M.G. (2019) Microplastics Accumulate on Pores in Seed Capsule and Delay Germination and Root Growth of the Terrestrial Vascular Plant Lepidium Sativum. Chemosphere, 226, 774-781.
https://doi.org/10.1016/j.chemosphere.2019.03.163
[79]  Zhang, Q., Zhao, M., Meng, F., Xiao, Y., Dai, W. and Luan, Y. (2021) Effect of Polystyrene Microplastics on Rice Seed Germination and Antioxidant Enzyme Activity. Toxics, 9, Article No. 179.
https://doi.org/10.3390/toxics9080179
[80]  Jiang, X., Chen, H., Liao, Y., Ye, Z., Li, M. and Klobučar, G. (2019) Ecotoxicity and Genotoxicity of Polystyrene Microplastics on Higher Plant Vicia Faba. Environmental Pollution, 250, 831-838.
https://doi.org/10.1016/j.envpol.2019.04.055
[81]  Meng, F., Yang, X., Riksen, M., Xu, M. and Geissen, V. (2021) Response of Common Bean (Phaseolus vulgaris L.) Growth to Soil Contaminated with Microplastics. Science of the Total Environment, 755, Article ID: 142516.
https://doi.org/10.1016/j.scitotenv.2020.142516
[82]  Tong, Y., Ding, J., Xiao, M., Shahbaz, M., Zhu, Z., Chen, M., et al. (2022) Microplastics Affect Activity and Spatial Distribution of C, N, and P Hydrolases in Rice Rhizosphere. Soil Ecology Letters, 5, Article ID: 220138.
https://doi.org/10.1007/s42832-022-0138-2
[83]  Khalid, N., Aqeel, M. and Noman, A. (2020) Microplastics Could Be a Threat to Plants in Terrestrial Systems Directly or Indirectly. Environmental Pollution, 267, Article ID: 115653.
https://doi.org/10.1016/j.envpol.2020.115653
[84]  Greenfield, L.M., Graf, M., Rengaraj, S., Bargiela, R., Williams, G., Golyshin, P.N., et al. (2022) Field Response of N2O Emissions, Microbial Communities, Soil Biochemical Processes and Winter Barley Growth to the Addition of Conventional and Biodegradable Microplastics. Agriculture, Ecosystems & Environment, 336, Article ID: 108023.
https://doi.org/10.1016/j.agee.2022.108023
[85]  Moshood, T.D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M.H. and AbdulGhani, A. (2022) Sustainability of Biodegradable Plastics: New Problem or Solution to Solve the Global Plastic Pollution? Current Research in Green and Sustainable Chemistry, 5, Article ID: 100273.
https://doi.org/10.1016/j.crgsc.2022.100273
[86]  Evode, N., Qamar, S.A., Bilal, M., Barceló, D. and Iqbal, H.M.N. (2021) Plastic Waste and Its Management Strategies for Environmental Sustainability. Case Studies in Chemical and Environmental Engineering, 4, Article ID: 100142.
https://doi.org/10.1016/j.cscee.2021.100142
[87]  Alhazmi, H., Almansour, F.H. and Aldhafeeri, Z. (2021) Plastic Waste Management: A Review of Existing Life Cycle Assessment Studies. Sustainability, 13, Article No. 5340.
https://doi.org/10.3390/su13105340
[88]  Zhang, G.S., Zhang, F.X. and Li, X.T. (2019) Effects of Polyester Microfibers on Soil Physical Properties: Perception from a Field and a Pot Experiment. Science of the Total Environment, 670, 1-7.
https://doi.org/10.1016/j.scitotenv.2019.03.149
[89]  Ingraffia, R., Amato, G., Bagarello, V., Carollo, F.G., Giambalvo, D., Iovino, M., Lehmann, A., Rillig, M.C. and Frenda, A.S. (2021) Polyester Microplastic Fibers Affect Soil Physical Properties and Erosion as a Function of Soil Type. Soil, 8, 421-435.
[90]  de Souza Machado, A.A., Lau, C.W., Till, J., Kloas, W., Lehmann, A., Becker, R., et al. (2018) Impacts of Microplastics on the Soil Biophysical Environment. Environmental Science & Technology, 52, 9656-9665.
https://doi.org/10.1021/acs.est.8b02212
[91]  Lozano, Y.M., Lehnert, T., Linck, L.T., Lehmann, A. and Rillig, M.C. (2021) Microplastic Shape, Polymer Type, and Concentration Affect Soil Properties and Plant Biomass. Frontiers in Plant Science, 12, Article ID: 616645.
https://doi.org/10.3389/fpls.2021.616645
[92]  Qi, Y., Beriot, N., Gort, G., Huerta Lwanga, E., Gooren, H., Yang, X., et al. (2020) Impact of Plastic Mulch Film Debris on Soil Physicochemical and Hydrological Properties. Environmental Pollution, 266, Article ID: 115097.
https://doi.org/10.1016/j.envpol.2020.115097
[93]  Guo, J., Huang, X., Xiang, L., Wang, Y., Li, Y., Li, H., et al. (2020) Source, Migration and Toxicology of Microplastics in Soil. Environment International, 137, Article ID: 105263.
https://doi.org/10.1016/j.envint.2019.105263
[94]  Lei, L., Liu, M., Song, Y., Lu, S., Hu, J., Cao, C., et al. (2018) Polystyrene (Nano)microplastics Cause Size-Dependent Neurotoxicity, Oxidative Damage and Other Adverse Effects in Caenorhabditis elegans. Environmental Science: Nano, 5, 2009-2020.
https://doi.org/10.1039/c8en00412a
[95]  Boots, B., Russell, C.W. and Green, D.S. (2019) Effects of Microplastics in Soil Ecosystems: Above and Below Ground. Environmental Science & Technology, 53, 11496-11506.
https://doi.org/10.1021/acs.est.9b03304
[96]  Lehmann, A., Fitschen, K. and Rillig, M.C. (2019) Abiotic and Biotic Factors Influencing the Effect of Microplastic on Soil Aggregation. Soil Systems, 3, Article No. 21.
https://doi.org/10.3390/soilsystems3010021
[97]  Fei, Y., Huang, S., Zhang, H., Tong, Y., Wen, D., Xia, X., et al. (2020) Response of Soil Enzyme Activities and Bacterial Communities to the Accumulation of Microplastics in an Acid Cropped Soil. Science of the Total Environment, 707, Article ID: 135634.
https://doi.org/10.1016/j.scitotenv.2019.135634
[98]  Yi, M., Zhou, S., Zhang, L. and Ding, S. (2020) The Effects of Three Different Microplastics on Enzyme Activities and Microbial Communities in Soil. Water Environment Research, 93, 24-32.
https://doi.org/10.1002/wer.1327

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133