全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肾性骨病的分子调控机制及中医药研究进展
Molecular Regulatory Mechanisms of Renal Osteodystrophy and Advances in Traditional Chinese Medicine Research

DOI: 10.12677/acm.2024.14102645, PP. 227-235

Keywords: 肾性骨病,分子信号通路,中医药研究
Renal Osteodystrophy
, Signaling Pathway, Traditional Chinese Medicine Research

Full-Text   Cite this paper   Add to My Lib

Abstract:

慢性肾脏病(CKD)是由多种肾脏疾病长期发展而来的慢性进展性疾病,肾性骨病(renal osteopathy)是慢性肾脏病晚期与血液透析患者的重要并发症。通常由肾小球滤过功能下降引起钙磷代谢紊乱和继发性甲状旁腺功能亢进,进而引发骨形成与吸收的异常,以骨骼畸形、骨质疏松、骨痛、软组织和血管钙化以及皮肤瘙痒等为主要表现。该文论述了肾性骨病的相关分子通路及治疗肾性骨病方面应用较为广泛的中药单体和复方的作用机制,旨在为中药防治肾性骨病的临床应用及新药研发提供思路。
Chronic kidney disease (CKD) is a progressive long-term condition that evolves from various renal disorders. Renal osteopathy, a significant complication in advanced CKD and hemodialysis patients, is typically caused by the decline in glomerular filtration rate, leading to calcium-phosphorus metabolism disorders and secondary hyperparathyroidism. This, in turn, triggers abnormalities in bone formation and resorption, characterized by skeletal deformities, osteoporosis, bone pain, soft tissue and vascular calcification, and skin itching. The article discusses the molecular pathways associated with renal osteopathy and the mechanisms of action of widely used monomers and compound formulations of traditional Chinese medicine in treating this condition. The aim is to provide insights for the clinical application and development of new drugs for the prevention and treatment of renal osteopathy using traditional Chinese medicine.

References

[1]  Wang, L., Xu, X., Zhang, M., Hu, C., Zhang, X., Li, C., et al. (2023) Prevalence of Chronic Kidney Disease in China. JAMA Internal Medicine, 183, 298-310.
https://doi.org/10.1001/jamainternmed.2022.6817
[2]  Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group (2017) KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney International Supplements, 7, 1-59.
https://doi.org/10.1016/j.kisu.2017.04.001
[3]  程海涛, 张晓暄, 李银辉. 肾性骨病发病机制研究及进展[J]. 中国骨质疏松杂志, 2020, 26(10): 1550-1554.
[4]  王左钰, 周阳, 熊明霞, 等. 成骨细胞代谢重编程与早期肾性骨病发生发展的研究进展[J]. 中国全科医学, 2024, 27(15): 1904-1910.
[5]  倪利华, 宋凯云, 汪晓晨, 等. 甲状旁腺素通过Wnt/β-catenin信号通路诱导内皮细胞发生内皮-脂肪细胞转分化[J]. 中华肾脏病杂志, 2019, 35(6): 432-440.
[6]  伍子贤, 戴如璋, 林少豪, 等. 肾性骨病相关分子通路的研究进展[J]. 中国骨质疏松杂志, 2020, 26(1): 146-151.
[7]  Muñoz-Castañeda, J.R., Rodelo-Haad, C., Pendon-Ruiz de Mier, M.V., Martin-Malo, A., Santamaria, R. and Rodriguez, M. (2020) Klotho/FGF23 and Wnt Signaling as Important Players in the Comorbidities Associated with Chronic Kidney Disease. Toxins, 12, Article 185.
https://doi.org/10.3390/toxins12030185
[8]  Sutkeviciute, I., Clark, L.J., White, A.D., Gardella, T.J. and Vilardaga, J. (2019) PTH/PTHrP Receptor Signaling, Allostery, and Structures. Trends in Endocrinology & Metabolism, 30, 860-874.
https://doi.org/10.1016/j.tem.2019.07.011
[9]  张洪彬, 赵寒辉, 王素霞, 等. 继发性甲状旁腺功能亢进的发病机制和诊治[J]. 临床肾脏病杂志, 2021, 21(11): 950-956.
[10]  郭亮, 周文胜, 朱恒涛. 继发性甲状旁腺功能亢进治疗进展[J]. 中华耳鼻咽喉头颈外科杂志, 2020, 55(9): 883-888.
[11]  Schunk, S.J., Floege, J., Fliser, D. and Speer, T. (2020) Wnt-β-Catenin Signalling—A Versatile Player in Kidney Injury and Repair. Nature Reviews Nephrology, 17, 172-184.
https://doi.org/10.1038/s41581-020-00343-w
[12]  Hu, L., Chen, W., Qian, A. and Li, Y. (2024) Wnt/β-Catenin Signaling Components and Mechanisms in Bone Formation, Homeostasis, and Disease. Bone Research, 12, Article No. 39.
https://doi.org/10.1038/s41413-024-00342-8
[13]  Cruciat, C.-M. and Niehrs, C. (2012) Secreted and Transmembrane Wnt Inhibitors and Activators. Cold Spring Harbor Perspectives in Biology, 5, a015081.
https://doi.org/10.1101/cshperspect.a015081
[14]  Kim, J., Han, W., Park, T., Kim, E.J., Bang, I., Lee, H.S., et al. (2020) Sclerostin Inhibits Wnt Signaling through Tandem Interaction with Two LRP6 Ectodomains. Nature Communications, 11, Article No. 5357.
https://doi.org/10.1038/s41467-020-19155-4
[15]  Sun, N., Uda, Y., Azab, E., Kochen, A., Santos, R.N.C.E., Shi, C., et al. (2019) Effects of Histone Deacetylase Inhibitor Scriptaid and Parathyroid Hormone on Osteocyte Functions and Metabolism. Journal of Biological Chemistry, 294, 9722-9733.
https://doi.org/10.1074/jbc.ra118.007312
[16]  Kulkarni, N.H., Halladay, D.L., Miles, R.R., Gilbert, L.M., Frolik, C.A., Galvin, R.J.S., et al. (2005) Effects of Parathyroid Hormone on Wnt Signaling Pathway in Bone. Journal of Cellular Biochemistry, 95, 1178-1190.
https://doi.org/10.1002/jcb.20506
[17]  Bordukalo-Nikšić, T., Kufner, V. and Vukičević, S. (2022) The Role of BMPs in the Regulation of Osteoclasts Resorption and Bone Remodeling: From Experimental Models to Clinical Applications. Frontiers in Immunology, 13, Article 869422.
https://doi.org/10.3389/fimmu.2022.869422
[18]  周鑫, 邢露, 李鹏权, 等. 血管钙化抑制因子BMP-7的研究进展[J]. 中国药理学通报, 2024, 40(7): 1226-1230.
[19]  Mathew, S., Davies, M., Lund, R., Saab, G. and Hruska, K.A. (2006) Function and Effect of Bone Morphogenetic Protein-7 in Kidney Bone and the Bone-Vascular Links in Chronic Kidney Disease. European Journal of Clinical Investigation, 36, 43-50.
https://doi.org/10.1111/j.1365-2362.2006.01663.x
[20]  Dalfino, G., Simone, S., Porreca, S., Cosola, C., Balestra, C., Manno, C., et al. (2010) Bone Morphogenetic Protein-2 May Represent the Molecular Link between Oxidative Stress and Vascular Stiffness in Chronic Kidney Disease. Atherosclerosis, 211, 418-423.
https://doi.org/10.1016/j.atherosclerosis.2010.04.023
[21]  Chen, N.X., Duan, D., O’Neill, K.D., Wolisi, G.O., Koczman, J.J., LaClair, R., et al. (2006) The Mechanisms of Uremic Serum-Induced Expression of Bone Matrix Proteins in Bovine Vascular Smooth Muscle Cells. Kidney International, 70, 1046-1053.
https://doi.org/10.1038/sj.ki.5001663
[22]  David, V., Martin, A., Isakova, T., Spaulding, C., Qi, L., Ramirez, V., et al. (2016) Inflammation and Functional Iron Deficiency Regulate Fibroblast Growth Factor 23 Production. Kidney International, 89, 135-146.
https://doi.org/10.1038/ki.2015.290
[23]  Portales-Castillo, I. and Simic, P. (2022) PTH, FGF-23, Klotho and Vitamin D as Regulators of Calcium and Phosphorus: Genetics, Epigenetics and Beyond. Frontiers in Endocrinology, 13, Article 992666.
https://doi.org/10.3389/fendo.2022.992666
[24]  Erben, R.G. and Andrukhova, O. (2017) FGF23-Klotho Signaling Axis in the Kidney. Bone, 100, 62-68.
https://doi.org/10.1016/j.bone.2016.09.010
[25]  Freundlich, M., Gamba, G. and Rodriguez-Iturbe, B. (2020) Fibroblast Growth Factor 23—Klotho and Hypertension: Experimental and Clinical Mechanisms. Pediatric Nephrology, 36, 3007-3022.
https://doi.org/10.1007/s00467-020-04843-6
[26]  Kawai, M., Kinoshita, S., Shimba, S., Ozono, K. and Michigami, T. (2014) Sympathetic Activation Induces Skeletal FGF23 Expression in a Circadian Rhythm-Dependent Manner. Journal of Biological Chemistry, 289, 1457-1466.
https://doi.org/10.1074/jbc.m113.500850
[27]  王世涛, 张法荣. 肾性骨病的中医药治疗进展[J]. 中国中西医结合肾病杂志, 2023, 24(4): 368-370.
[28]  Kim, J., Kim, M., Hong, S., Kim, E., Lee, H., Jung, H., et al. (2021) Albiflorin Promotes Osteoblast Differentiation and Healing of Rat Femoral Fractures through Enhancing BMP-2/Smad and Wnt/β-Catenin Signaling. Frontiers in Pharmacology, 12, Article 690113.
https://doi.org/10.3389/fphar.2021.690113
[29]  Zhang, Z., Zhang, Q., Yang, H., Liu, W., Zhang, N., Qin, L., et al. (2016) Monotropein Isolated from the Roots of Morinda Officinalis Increases Osteoblastic Bone Formation and Prevents Bone Loss in Ovariectomized Mice. Fitoterapia, 110, 166-172.
https://doi.org/10.1016/j.fitote.2016.03.013
[30]  Lee, S., Park, S., Kwak, H., Oh, J., Min, Y. and Kim, S. (2008) Anabolic Activity of Ursolic Acid in Bone: Stimulating Osteoblast Differentiation in Vitro and Inducing New Bone Formation in vivo. Pharmacological Research, 58, 290-296.
https://doi.org/10.1016/j.phrs.2008.08.008
[31]  姚鑫宇, 武瑞骐, 陈广辉, 等. 地黄活性成分治疗骨质疏松症的相关信号通路研究[J]. 中国骨质疏松杂志, 2023, 29(12): 1826-1832, 1850.
[32]  Deng, T., Ding, W., Lu, X., Zhang, Q., Du, J., Wang, L., et al. (2024) Pharmacological and Mechanistic Aspects of Quercetin in Osteoporosis. Frontiers in Pharmacology, 15, Article 1338951.
https://doi.org/10.3389/fphar.2024.1338951
[33]  Wei, Q., He, M., Chen, M., Chen, Z., Yang, F., Wang, H., et al. (2017) Icariin Stimulates Osteogenic Differentiation of Rat Bone Marrow Stromal Stem Cells by Increasing TAZ Expression. Biomedicine & Pharmacotherapy, 91, 581-589.
https://doi.org/10.1016/j.biopha.2017.04.019
[34]  Chen, X., Shen, Y., He, M., Yang, F., Yang, P., Pang, F., et al. (2019) Polydatin Promotes the Osteogenic Differentiation of Human Bone Mesenchymal Stem Cells by Activating the Bmp2-Wnt/β-Catenin Signaling Pathway. Biomedicine & Pharmacotherapy, 112, Article 108746.
https://doi.org/10.1016/j.biopha.2019.108746
[35]  Tao, K., Xiao, D., Weng, J., Xiong, A., Kang, B. and Zeng, H. (2016) Berberine Promotes Bone Marrow-Derived Mesenchymal Stem Cells Osteogenic Differentiation via Canonical Wnt/β-Catenin Signaling Pathway. Toxicology Letters, 240, 68-80.
https://doi.org/10.1016/j.toxlet.2015.10.007
[36]  Chen, J., Liao, X. and Gan, J. (2023) Review on the Protective Activity of Osthole against the Pathogenesis of Osteoporosis. Frontiers in Pharmacology, 14, Article 1236893.
https://doi.org/10.3389/fphar.2023.1236893
[37]  郭华慧, 李美丹, 黄仁发, 等. 基于Klotho-FGF23轴探讨加味六味地黄汤对CKD-MBD模型大鼠骨保护作用的机制[J]. 中国实验方剂学杂志, 2021, 27(24): 61-70.
[38]  郭华慧, 黄仁发. 基于Wnt/β-catenin信号通路探讨加味六味地黄汤改善肾性骨病的机制[D]: [硕士学位论文]. 南宁: 广西中医药大学, 2021.
[39]  李永伟, 王美霞, 冯静, 等. 黑地黄丸对肾性骨病大鼠的改善作用机制研究[J]. 中国临床药理学杂志, 2021, 37(18): 2472-2475.
[40]  于思明, 郭丹丹, 代丽娟, 等. 补肾健骨方对维持性血液透析患者肾性骨病与血清Klotho蛋白水平的影响[J]. 中国临床保健杂志, 2021, 24(4): 454-458.
[41]  杨冰, 檀金川. 延肾一号方对维持性血透矿物质和骨代谢异常患者FGF23、klotho蛋白的影响[D]: [硕士学位论文]. 石家庄: 河北中医学院, 2021.
[42]  Hu, S., Wang, D., Zhang, R., et al. (2018) Effect of Ronghuang Granule on serum FGF23, FGFRs and Klotho in Non-Dialysis Patients with CKD-MBD and Kidney Deficiency and Damp-Heat Syndrome. Journal of Southern Medical University, 38, 1427-1432.
https://doi.org/10.12122/j.issn.1673-4254.2018.12.05
[43]  Ma, X. and He, L. (2018) The Intervention Effect of Zuogui Pill on Chronic Kidney Disease-Mineral and Bone Disorder Regulatory Factor. Biomedicine & Pharmacotherapy, 106, 54-60.
https://doi.org/10.1016/j.biopha.2018.06.092

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133