全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MYEOV参与肿瘤生物学过程及促癌机制的研究进展
Research Progress on the Involvement of MYEOV in Tumor Biological Processes and Cancer-Promoting Mechanisms

DOI: 10.12677/acm.2024.14102636, PP. 175-180

Keywords: 骨髓瘤过表达基因,增殖,转化生长因子-β,甲基化,免疫微环境
MYEOV
, Proliferation, TGF-β, Methylation, Immune Microenviroment

Full-Text   Cite this paper   Add to My Lib

Abstract:

骨髓瘤过表达基因(Myeloma overexpressed gene, MYEOV)近年来在肿瘤研究中受到广泛关注。MYEOV在多种恶性肿瘤中高表达,能够激活TGF-β、TNF、NF-κB等信号通路,促进肿瘤细胞的侵袭、增殖及迁移等,在促癌方面发挥关键作用。MYEOV还参与肿瘤微环境的构建,与细胞免疫密切相关。尽管该基因与肿瘤发病密切相关,但MYEOV介导肿瘤发生的分子机制、蛋白表达及免疫相关性仍不明确,因此我们将MYEOV在不同肿瘤中的生物学过程及促癌机制等方面进行总结,并探讨了MYEOV与肿瘤微环境和免疫系统的关系,为肿瘤的治疗提供新的思路。
Myeloma overexpressed gene (MYEOV) has attracted widespread attention in recent tumor research. MYEOV is highly expressed in multiple malignancies and can activate signaling pathways such as TGF-β, TNF and NF-κB, promoting the invasion, proliferation, and migration of tumor cells, playing a key role in carcinogenesis. MYEOV is also involved in the construction of the tumor microenvironment and is closely related to cellular immunity. Although the gene is closely related to tumorigenesis, the molecular mechanism, protein expression, and immune correlation mediated by MYEOV in tumorigenesis are still unclear. Therefore, we summarize the biological processes and carcinogenic mechanisms of MYEOV in different tumors, and discuss the relationship between MYEOV and the tumor microenvironment and the immune system, providing new ideas for tumor treatment.

References

[1]  Feng, Z., Chen, P., Li, K., Lou, J., Wu, Y., Li, T., et al. (2021) A Novel Ferroptosis-Related Gene Signature Predicts Recurrence in Patients with Pancreatic Ductal Adenocarcinoma. Frontiers in Molecular Biosciences, 8, Article ID: 650264.
https://doi.org/10.3389/fmolb.2021.650264
[2]  Xiong, D., Zhang, L. and Sun, Z. (2023) Targeting the Epigenome to Reinvigorate T Cells for Cancer Immunotherapy. Military Medical Research, 10, Article No. 59.
https://doi.org/10.1186/s40779-023-00496-2
[3]  Specht, K., Haralambieva, E., Bink, K., Kremer, M., Mandl-Weber, S., Koch, I., et al. (2004) Different Mechanisms of Cyclin D1 Overexpression in Multiple Myeloma Revealed by Fluorescence in Situ Hybridization and Quantitative Analysis of mRNA Levels. Blood, 104, 1120-1126.
https://doi.org/10.1182/blood-2003-11-3837
[4]  Wu, H., Tian, W., Tai, X., Li, X., Li, Z., Shui, J., et al. (2021) Identification and Functional Analysis of Novel Oncogene DDX60L in Pancreatic Ductal Adenocarcinoma. BMC Genomics, 22, Article No. 833.
https://doi.org/10.1186/s12864-021-08137-5
[5]  曹丽君, 张行行, 张月, 等. 下调MYEOV抑制胰腺癌细胞PaTu8988增殖、迁移、侵袭[J]. 现代肿瘤医学, 2023, 31(10): 1794-1799.
[6]  Liang, E., Lu, Y., Shi, Y., Zhou, Q. and Zhi, F. (2020) MYEOV Increases HES1 Expression and Promotes Pancreatic Cancer Progression by Enhancing SOX9 Transactivity. Oncogene, 39, 6437-6450.
https://doi.org/10.1038/s41388-020-01443-4
[7]  Tange, S., Hirano, T., Idogawa, M., Hirata, E., Imoto, I. and Tokino, T. (2023) MYEOV Overexpression Induced by Demethylation of Its Promoter Contributes to Pancreatic Cancer Progression via Activation of the Folate Cycle/c-Myc/mTORC1 Pathway. BMC Cancer, 23, Article No. 85.
https://doi.org/10.1186/s12885-022-10433-6
[8]  Oshima, K., Kato, K., Ito, Y., Daiko, H., Nozaki, I., Nakagawa, S., et al. (2022) Prognostic Biomarker Study in Patients with Clinical Stage I Esophageal Squamous Cell Carcinoma: Jcog0502-a1. Cancer Science, 113, 1018-1027.
https://doi.org/10.1111/cas.15251
[9]  Leyden, J., Murray, D., Moss, A., Arumuguma, M., Doyle, E., McEntee, G., et al. (2006) Net1 and MYEOV: Computationally Identified Mediators of Gastric Cancer. British Journal of Cancer, 94, 1204-1212.
https://doi.org/10.1038/sj.bjc.6603054
[10]  Zhang, Z., Huang, L., Li, J. and Wang, P. (2022) Bioinformatics Analysis Reveals Immune Prognostic Markers for Overall Survival of Colorectal Cancer Patients: A Novel Machine Learning Survival Predictive System. BMC Bioinformatics, 23, Article No. 124.
https://doi.org/10.1186/s12859-022-04657-3
[11]  Lawlor, G., Doran, P.P., MacMathuna, P. and Murray, D.W. (2010) MYEOV (Myeloma Overexpressed Gene) Drives Colon Cancer Cell Migration and Is Regulated by PGE2: Clinical Cancer Research. Journal of Experimental & Clinical Cancer Research, 29, Article No. 81.
https://doi.org/10.1186/1756-9966-29-81
[12]  Horie, M., Kaczkowski, B., Ohshima, M., Matsuzaki, H., Noguchi, S., Mikami, Y., et al. (2017) Integrative CAGE and DNA Methylation Profiling Identify Epigenetically Regulated Genes in NSCLC. Molecular Cancer Research, 15, 1354-1365.
https://doi.org/10.1158/1541-7786.mcr-17-0191
[13]  Fang, L., Wu, S., Zhu, X., Cai, J., Wu, J., He, Z., et al. (2018) MYEOV Functions as an Amplified Competing Endogenous RNA in Promoting Metastasis by Activating TGF-β Pathway in NSCLC. Oncogene, 38, 896-912.
https://doi.org/10.1038/s41388-018-0484-9
[14]  Xu, L., Huang, Z., Zeng, Z., Li, J., Xie, H. and Xie, C. (2022) An Integrative Analysis of DNA Methylation and Gene Expression to Predict Lung Adenocarcinoma Prognosis. Frontiers in Genetics, 13, Article ID: 970507.
https://doi.org/10.3389/fgene.2022.970507
[15]  Janssen, J.W.G., Imoto, I., Inoue, J., Shimada, Y., Ueda, M., Imamura, M., et al. (2002) MYEOV, a Gene at 11q13, Is Coamplified with CCND1, but Epigenetically Inactivated in a Subset of Esophageal Squamous Cell Carcinomas. Journal of Human Genetics, 47, 460-464.
https://doi.org/10.1007/s100380200065
[16]  Janssen, J.W.G., Cuny, M., Orsetti, B., Rodriguez, C., Vallés, H., Bartram, C.R., et al. (2002) MYEOV: A Candidate Gene for DNA Amplification Events Occurring Centromeric to ccnd1 in Breast Cancer. International Journal of Cancer, 102, 608-614.
https://doi.org/10.1002/ijc.10765
[17]  Moreaux, J., Hose, D., Bonnefond, A., Reme, T., Robert, N., Goldschmidt, H., et al. (2010) MYEOV Is a Prognostic Factor in Multiple Myeloma. Experimental Hematology, 38, 1189-1198.e3.
https://doi.org/10.1016/j.exphem.2010.09.002
[18]  Ou, D., Wu, Y., Zhang, J., Liu, J., Liu, Z., Shao, M., et al. (2023) MYEOV with High Frequencies of Mutations in Head and Neck Cancers Facilitates Cancer Cell Malignant Behaviors. Biochemical Genetics, 62, 1657-1674.
https://doi.org/10.1007/s10528-023-10484-9
[19]  Takita, J., Chen, Y., Okubo, J., Sanada, M., Adachi, M., Ohki, K., et al. (2011) Aberrations of NEGR1 on 1p31 and MYEOV on 11q13 in Neuroblastoma. Cancer Science, 102, 1645-1650.
https://doi.org/10.1111/j.1349-7006.2011.01995.x
[20]  Wang, J., Zhang, X., Yao, H., Le, Y., Zhou, W., Li, J., et al. (2020) Mir-490-5p Functions as Tumor Suppressor in Childhood Neuroblastoma by Targeting MYEOV. Human Cell, 33, 261-271.
https://doi.org/10.1007/s13577-019-00302-z
[21]  Shafqat, A., Khan, J.A., Alkachem, A.Y., Sabur, H., Alkattan, K., Yaqinuddin, A., et al. (2023) How Neutrophils Shape the Immune Response: Reassessing Their Multifaceted Role in Health and Disease. International Journal of Molecular Sciences, 24, Article No. 17583.
https://doi.org/10.3390/ijms242417583
[22]  Zhang, R. and Ma, A. (2021) High Expression of MYEOV Reflects Poor Prognosis in Non-Small Cell Lung Cancer. Gene, 770, Article ID: 145337.
https://doi.org/10.1016/j.gene.2020.145337
[23]  Luo, H. and Ma, C. (2020) Identification of Prognostic Genes in Uveal Melanoma Microenvironment. PLOS ONE, 15, e0242263.
https://doi.org/10.1371/journal.pone.0242263
[24]  Li, Z., Hu, C., Yang, Z., Yang, M., Fang, J. and Zhou, X. (2021) Bioinformatic Analysis of Prognostic and Immune-Related Genes in Pancreatic Cancer. Computational and Mathematical Methods in Medicine, 2021, Article ID: 5549298.
https://doi.org/10.1155/2021/5549298
[25]  Tang, P., Qu, W., Wu, D., Chen, S., Liu, M., Chen, W., et al. (2021) Identifying and Validating an Acidosis-Related Signature Associated with Prognosis and Tumor Immune Infiltration Characteristics in Pancreatic Carcinoma. Journal of Immunology Research, 2021, Article ID: 3821055.
https://doi.org/10.1155/2021/3821055
[26]  Tang, R., Ji, J., Ding, J., Huang, J., Gong, B., Zhang, X., et al. (2020) Overexpression of MYEOV Predicting Poor Prognosis in Patients with Pancreatic Ductal Adenocarcinoma. Cell Cycle, 19, 1602-1610.
https://doi.org/10.1080/15384101.2020.1757243
[27]  Jiang, Z., Liu, Z., Li, M., Chen, C. and Wang, X. (2019) Increased Glycolysis Correlates with Elevated Immune Activity in Tumor Immune Microenvironment. EBioMedicine, 42, 431-442.
https://doi.org/10.1016/j.ebiom.2019.03.068
[28]  van den Bulk, J., Verdegaal, E.M. and de Miranda, N.F. (2018) Cancer Immunotherapy: Broadening the Scope of Targetable Tumours. Open Biology, 8, Article ID:180037.
https://doi.org/10.1098/rsob.180037
[29]  Tang, R., Liu, X., Wang, W., Hua, J., Xu, J., Liang, C., et al. (2021) Role of Tumor Mutation Burden-Related Signatures in the Prognosis and Immune Microenvironment of Pancreatic Ductal Adenocarcinoma. Cancer Cell International, 21, Article No. 196.
https://doi.org/10.1186/s12935-021-01900-4
[30]  Malumbres, M. and Barbacid, M. (2009) Cell Cycle, Cdks and Cancer: A Changing Paradigm. Nature Reviews Cancer, 9, 153-166.
https://doi.org/10.1038/nrc2602

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133